Integrating MicroRNA and mRNA Expression Data for Cancer Classification

Hasan Oğul, Onur Altındağ

2013

Abstract

Classifying cancer samples from gene expression data is one of the central problems in current systems biomedicine. The problem is challenging due to the small number of samples in comparison to the number of genes (mRNAs) in a typical microarray experiment. Recent reports suggest that feature selection may help to manage the problem. Furthermore, microRNA expression profiles have shown to provide valuable knowledge in detecting cancer signatures. In this study, we present the results of a comprehensive study to assess the effect of feature selection and microRNA-mRNA data integration in cancer type prediction from microarray expression data. We prove that this integration can significantly improve prediction accuracy with a proper feature selection strategy.

References

  1. Bartel, D. P., 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281-297.
  2. Bishop C. M., 2006. Pattern Recognition and Machine Learning. Springer-Verlag New York, NJ, USA.
  3. Cai, Z., Goebel, R., Salavatipour, M. R., and Lin, G., 2007. Selecting dissimilar genes for multi-class classification, an application in cancer subtyping. BMC Bioinformatics, 8, 206.
  4. Caruana, R., Niculescu-Mizil, A., 2006, An Empirical Comparison of Supervised Learning Algorithms, Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA.
  5. Chan, E., Patel, R., Nallur, S., Ratner, E., Bacchiocchi, A., Hoyt, K., Szpakowski, S., Godshalk, S., Ariyan, S., Sznol, M., Halaban, R., Krauthammer, M., Tuck, D., Slack, F.J., Weidhaas, J.B., 2011. MicroRNA signatures differentiate melanoma subtypes, Cell Cycle, 10, 1845-1852.
  6. Guyon, I., Weston, J., Barnhill, S., and Vapnik, V., 2002. Gene selection for cancer classification using support vector machines. Machine Learning, 46, 389-422.
  7. Hall, M. A., 1998. Correlation-based Feature Subset Selection for Machine Learning. PhD Thesis, Hamilton, New Zealand.
  8. Huopaniemi, I., Suvitaival, T., Nikkilä, J., Orešic, M., Kaski, S., 2010. Multivariate multi-way analysis of multi-source data. Bioinformatics, 26, i391-i398.
  9. Klami, A., Kaski, S., 2008. Probabilistic approach to detecting dependencies between data sets. Neurocomputing, 72, 39-46.
  10. Lin, T. C., Liu, R. S., Chen, C. Y., Chao, Y. T., and Chen, S.Y., 2006. Pattern classification in DNA microarray data of multiple tumor types. Pattern Recognit., 39, 2426-2438.
  11. Liu, K. H., and Xu, C. G., 2009. A genetic programmingbased approach to the classification of multiclass microarray datasets. Bioinformatic,s 25, 331-337.
  12. Liu, K. H., and Xu, C. G., 2009. A genetic programmingbased approach to the classification of multiclass microarray datasets. Bioinformatics, 25, 331-337.
  13. Lu, J., Getz, G., Miska, E., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al., 2005. MicroRNA expression profiles classify human cancers. Nature, 435, 83-838.
  14. Ogul, H., Akkaya, M. S., 2011. Data integration in functional analysis of microRNAs. Current Bioinformatics, 6, 462-472.
  15. Peng, S., Xu, Q., Ling, X. B., Peng, X., Du, W., and Chen, L., 2003. Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines. FEBS Lett,. 555, 358-362.
  16. Peng, S., Zeng, X., Li. X., Peng, X., Chen, L., 2009. Multi-class cancer classification through gene expression profiles: microRNA versus mRNA. J. Genet. Genomics, 36, 409-416.
  17. Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S., Yeang, C.H., Angelo, M., Ladd, C., Reich, M., Latulippe, E., Mesirov, J.P., Poggio, T., Gerald, W., Loda, M., Lander, E.S., and Golub, T.R., 2001. Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Natl. Acad. Sci., 98, 15149-15154.
  18. Saeys, Y., Inza, I., Larrañaga, P., 2007. A review of feature selection techniques in bioinformatics. Bioinformatics, 23, 2507-2517.
  19. Su, A. I., Welsh, J. B., Sapinoso, L. M., Kern, S. G., Dimitrov, P., Lapp, H., Schultz, P.G., Powell, S.M., Moskaluk, C.A., Frierson, H.F., and Hampton, G.M., 2001. Molecular classification of human carcinomas by use of gene expression signatures. Cancer Res., 61, 7388-7393.
  20. Su, Y., Murali, T. M., Pavlovic, V., Schaffer, M., and Kasif, S., 2003. RankGene: Identification of diagnostic genes based on expression data. Bioinformatics 19: 1578-1579.
  21. West M., 2003. Bayesian Factor Regression Models in the Large p, Small n Paradigm. Bayesian Statistics, 7, 723-732.
  22. Xu, R., Anagnostopoulos, G. C., and Wunsch, D. C., 2007. Multiclass cancer classification using semisupervised ellipsoid ARTMAP and particle swarm optimization with gene expression data. IEEE/ACM Trans. Comput. Biol. Bioinform., 4, 65-77.
  23. Xua, R., Xub, J., Wunsch, D. C., 2009. MicroRNA expression profile based cancer classification using Default ARTMAP, Neural Networks, 22, 774-780.
  24. Hall, M., Frank E., Holmes G., Pfahringer B., Reutemann P., Witten H.I., 2009, The WEKA Data Mining Software: An Update; SIGKDD Explorations, 11,1.
Download


Paper Citation


in Harvard Style

Oğul H. and Altındağ O. (2013). Integrating MicroRNA and mRNA Expression Data for Cancer Classification . In Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-8565-41-9, pages 503-507. DOI: 10.5220/0004334405030507


in Bibtex Style

@conference{icpram13,
author={Hasan Oğul and Onur Altındağ},
title={Integrating MicroRNA and mRNA Expression Data for Cancer Classification},
booktitle={Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2013},
pages={503-507},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004334405030507},
isbn={978-989-8565-41-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Integrating MicroRNA and mRNA Expression Data for Cancer Classification
SN - 978-989-8565-41-9
AU - Oğul H.
AU - Altındağ O.
PY - 2013
SP - 503
EP - 507
DO - 10.5220/0004334405030507