Multi-scale, Multi-feature Vector Flow Active Contours for Automatic Multiple Face Detection

Joanna Isabelle Olszewska

2013

Abstract

To automatically detect faces in real-world images presenting challenges such as complex background and multiple foregrounds, we propose a new method which is based on parametric active contours and which does not require any supervision, model nor training. The proposed face detection technique computes multi-scale representations of an input color image and based on them initializes the multi-feature vector flow active contours which, after their evolution, automatically delineate the faces. In this way, our computationally efficient system successfully detects faces in complex pictures with varying numbers of persons of diverse gender and origins and with different types of face views (front/profile) and variate face alignments (straight/oblique), as demonstrated in tests carried out on several datasets.

References

  1. Bajpai, S., Singh, A., and Karthik, K. V. (2011). An experimental comparison of face detection algorithms. In Proceedings of the IEEE International Workshop on Conference on Machine Vision, pages 196-200.
  2. Bing, X., Wei, Y., and Charoensak, C. (2004). Face contour extraction using snake. In Proceedings of the IEEE International Workshop on Biomedical Circuits and Systems, pages S3.2.5-8.
  3. Charfi, M. (2010). Using the GGVF for automatic initialization and splitting snake model. In Proceedings of the IEEE International Symposium on I/V Communications and Mobile Network, pages 1-4.
  4. Gunn, S. R. and Nixon, M. S. (1998). Global and local active contours for head boundary extraction. International Journal of Computer Vision, 30(1):43-54.
  5. Hanmin, H. and Zhen, J. (2008). Application of an improved snake model in face location based on skin color. In Proceedings of the IEEE World Congress on Intelligent Control and Automation, pages 6897- 6901.
  6. Harper, P. and Reilly, R. B. (2000). Color based video segmentation using level sets. In Proceedings of the IEEE International Conference on Image Processing, pages 480-483.
  7. Heiler, M. and Schnoerr, C. (2005). Natural image statistics for natural image segmentation. International Journal of Computer Vision, 63(1):5-19.
  8. Hsu, R.-L. and Jain, A. K. (2003). Generating discriminating cartoon faces using interacting snakes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(11):1388-1398.
  9. Huang, F. and Su, J. (2004). Multiple face contour detection based on geometric active contours. In Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, pages 385-390.
  10. Kim, G., Suhr, J. K., Jung, H. G., and Kim, J. (2010). Face occlusion detection by using B-spline active contour and skin color information. In Proceedings of the IEEE International Conference on Control, Automation, Robotics and Vision, pages 627-632.
  11. Lanitis, A., Taylor, C. J., and Cootes, T. F. (2005). Automatic face identification system using flexible appearance models. Image and Vision Computing, 13(5):393-401.
  12. Li, B. and Acton, S. T. (2008). Automatic active model initialization via Poisson inverse gradient. IEEE Transactions on Image Processing, 17(8):1406-1420.
  13. Li, Y., Lai, J. H., and Yuen, P. C. (2006). Multi-template ASM method for feature points detection of facial image with diverse expressions. In Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, pages 435-440.
  14. Neuenschwander, W., Fua, P., Szekeley, G., and Kubler, O. (1994). Initializing snakes. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 658-663.
  15. Ohliger, K., Edeler, T., Condurache, A. P., and Mertins, A. (2010). A novel approach of initializing regionbased active contours in noisy images by means of unimodality analysis. In Proceedings of the IEEE International Conference on Signal Processing, pages 885-888.
  16. Olszewska, J. I. (2009). Unified Framework for MultiFeature Active Contours. PhD thesis, UCL.
  17. Olszewska, J. I. (2012). Multi-target parametric active contours to support ontological domain representation. In Proceedings of the Conference on Shape Recognition and Artificial Intelligence (RFIA 2012), pages 779- 784.
  18. Olszewska, J. I. et al. (2007). Non-rigid object tracker based on a robust combination of parametric active contour and point distribution model. In Proceedings of the SPIE International Conference on Visual Communications and Image Processing, pages 6508-2A.
  19. Olszewska, J. I. et al. (2008). Multi-feature vector flow for active contour tracking. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, pages 721-724.
  20. Perlibakas, V. (2003). Automatical detection of face features and exact face contour. Pattern Recognition Letters, 24(16):2977-2985.
  21. Pluempitiwiriyawej, C. and Sotthivirat, S. (2005). Active contours with automatic initialization for myocardial perfusion analysis. In Proceedings of the IEEE International Conference on Engineering in Medicine and Biology, pages 3332-3335.
  22. Sobottka, K. and Pitas, I. (1996). Segmentation and tracking of faces in color images. In Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, pages 236-241.
  23. Tauber, C., Batatia, H., and Ayache, A. (2005). A general quasi-automatic initialization for snakes: Application to ultrasound images. In Proceedings of the IEEE International Conference on Image Processing, volume 2, pages 806-809.
  24. Vatsa, M., Singh, R., and Gupta, P. (2003). Face detection using gradient vector flow. In Proceedings of the IEEE International Conference on Machine Learning and Cybernetics, pages 3259-3263.
  25. Wood, R. and Olszewska, J. I. (2012). Lighting-variable AdaBoost based-on system for robust face detection. In Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing, pages 494-497.
  26. Xingfei, G. and Jie, T. (2002). An automatic active contour model for multiple objects. In Proceedings of the IEEE International Conference on Pattern Recognition, volume 2, pages 881-884.
  27. Yokoyama, T., Yagi, Y., and Yachida, M. (1998). Active contour model for extracting human faces. In Proceedings of the IEEE International Conference on Pattern Recognition, volume 1, pages 673-676.
  28. Zhou, Z., Yang, W., Zhang, J., Zheng, L., and Lei, J. (2010). Facial contour extraction based on level set and grey prediction in sequence images. Journal of Computational Information Systems, 6(6):1975-1981.
Download


Paper Citation


in Harvard Style

Olszewska J. (2013). Multi-scale, Multi-feature Vector Flow Active Contours for Automatic Multiple Face Detection . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: MPBS, (BIOSTEC 2013) ISBN 978-989-8565-36-5, pages 429-435. DOI: 10.5220/0004342604290435


in Bibtex Style

@conference{mpbs13,
author={Joanna Isabelle Olszewska},
title={Multi-scale, Multi-feature Vector Flow Active Contours for Automatic Multiple Face Detection},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: MPBS, (BIOSTEC 2013)},
year={2013},
pages={429-435},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004342604290435},
isbn={978-989-8565-36-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: MPBS, (BIOSTEC 2013)
TI - Multi-scale, Multi-feature Vector Flow Active Contours for Automatic Multiple Face Detection
SN - 978-989-8565-36-5
AU - Olszewska J.
PY - 2013
SP - 429
EP - 435
DO - 10.5220/0004342604290435