SerfSIN: Search Engines Results' Refinement using a Sense-driven Inference Network
Christos Makris, Yannis Plegas, Giannis Tzimas, Emmanouil Viennas
2013
Abstract
Α novel framework is presented for performing re-ranking in the search results of a Web search engine, incorporating user judgments as registered in their selection of relevant documents. The proposed scheme combines smoothly techniques from the area of Inference Networks with text processing techniques exploiting semantic information, and is instantiated to a fully functional prototype at present leading to a reranking whose quality outperforms significantly the initial ranking. The innovative idea is the use of a probabilistic network based to the senses of the documents. When the user selects a document, the belief of the network to the senses of the selected document is raised up and the documents that contain these senses are ranked higher. Also we present an implemented prototype that supports three different Web search engines (and it can be extended to support many more), while extensive experiments in the ClueWeb09 dataset using the TREC’s 2009, 2010 and 2011 Web Tracks’ data depict the improvement in search performance that the proposed approach attains.
References
- Abdo, A., Salim, N., and Ahmed, A., 2011. Implementing relevance feedback in ligand-based virtual screening using Bayesian inference network. Journal of Biomolecular Screening, 16, 1081-1088.
- Abdo, A., Salim, N., and Ahmed, A., 2011. Implementing relevance feedback in ligand-based virtual screening using Bayesian inference network. Journal of Biomolecular Screening, 16, 1081-1088.
- Acid, S., de Campos, L. M., Fernandez, J. M., and Huete, J. F., 2003. An information retrieval model based on simple Bayesian networks. International Journal of Intelligent Systems, 18, 251-265.
- Acid, S., de Campos, L. M., Fernandez, J. M., and Huete, J. F., 2003. An information retrieval model based on simple Bayesian networks. International Journal of Intelligent Systems, 18, 251-265.
- Ahmed, A., Abdo, A., and Salim, N., 2012. Ligand-Based Virtual Screening Using Bayesian Inference Network and Reweighted Fragments. The Scientific World Journal.
- Ahmed, A., Abdo, A., and Salim, N., 2012. Ligand-Based Virtual Screening Using Bayesian Inference Network and Reweighted Fragments. The Scientific World Journal.
- Antoniou, D., Plegas, Y., Tsakalidis, A., Tzimas, G., and Viennas, E., 2012. Dynamic Refinement of Search Engines Results Utilizing the User Intervention. Journal of Systems and Software, 85, 7, 1577-1587.
- Antoniou, D., Plegas, Y., Tsakalidis, A., Tzimas, G., and Viennas, E., 2012. Dynamic Refinement of Search Engines Results Utilizing the User Intervention. Journal of Systems and Software, 85, 7, 1577-1587.
- Baeza-Yates, R. and Ribeiro-Neto, B., 2011. Modern Information Retrieval: the concepts and technology behind search. Addison Wesley, Essex.
- Baeza-Yates, R. and Ribeiro-Neto, B., 2011. Modern Information Retrieval: the concepts and technology behind search. Addison Wesley, Essex.
- Blanco, R., and Lioma, C., 2012. Graph-based term weighting for information retrieval. Information Retrieval, 15, 1 (2012), 54-92.
- Blanco, R., and Lioma, C., 2012. Graph-based term weighting for information retrieval. Information Retrieval, 15, 1 (2012), 54-92.
- Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D. U., 2006. Complex networks: structure and dynamics. Physics Reports, 424, 175-308.
- Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D. U., 2006. Complex networks: structure and dynamics. Physics Reports, 424, 175-308.
- Brandt, C., Joachims, T., Yue, Y., and Bank, J., 2011. Dynamic Ranked Retrieval, In WSDM 7811.
- Brandt, C., Joachims, T., Yue, Y., and Bank, J., 2011. Dynamic Ranked Retrieval, In WSDM 7811.
- Callan, J., 2009. The ClueWeb09 Dataset. available at http://boston.lti.cs.cmu.edu/clueweb09 (accessed 1st August 2012).
- Callan, J., 2009. The ClueWeb09 Dataset. available at http://boston.lti.cs.cmu.edu/clueweb09 (accessed 1st August 2012).
- Chapelle, O., and Zhang, Y., 2009. A dynamic Bayesian network click model for web search ranking. In Proceedings of the 18th International Conference on WWW, ACM, New York, USA, pp. 1-10.
- Chapelle, O., and Zhang, Y., 2009. A dynamic Bayesian network click model for web search ranking. In Proceedings of the 18th International Conference on WWW, ACM, New York, USA, pp. 1-10.
- Clarke, C. L. A., Craswell, N., and Soboroff, I., 2009. Overview of the TREC 2009 Web Track. In Proceedings of the 18th TREC Conference.
- Clarke, C. L. A., Craswell, N., and Soboroff, I., 2009. Overview of the TREC 2009 Web Track. In Proceedings of the 18th TREC Conference.
- Clarke, C.L.A., Craswell, N., Soboroff, I., and Cormack, G., 2010. Overview of the TREC 2010 Web Track. In Proceedings of the 19th TREC Conference.
- Clarke, C.L.A., Craswell, N., Soboroff, I., and Cormack, G., 2010. Overview of the TREC 2010 Web Track. In Proceedings of the 19th TREC Conference.
- Clarke, C.L.A., Craswell, N., Soboroff, I., and Voorhees, E. M., 2011. Overview of the TREC 2011 Web Track. In Proceedings of the 20th TREC Conference.
- Clarke, C.L.A., Craswell, N., Soboroff, I., and Voorhees, E. M., 2011. Overview of the TREC 2011 Web Track. In Proceedings of the 20th TREC Conference.
- Fellbaum, C., 1998 WordNet, an electronic lexical database. The MIT Press.
- Fellbaum, C., 1998 WordNet, an electronic lexical database. The MIT Press.
- Howe, A. E., and Dreilinger, D., 1997. SavvySearch: a meta-search engine that learns which search engines to query. AI Magazine, 18, 2, 19-25.
- Howe, A. E., and Dreilinger, D., 1997. SavvySearch: a meta-search engine that learns which search engines to query. AI Magazine, 18, 2, 19-25.
- Jarvelin, K., and Kekalainen, J., 2000. IR Evaluation Methods for Retrieving Highly Relevant Documents. In Proceedings of the 23rd International ACM SIGIR Conference, 41-48.
- Jarvelin, K., and Kekalainen, J., 2000. IR Evaluation Methods for Retrieving Highly Relevant Documents. In Proceedings of the 23rd International ACM SIGIR Conference, 41-48.
- Lee, J., Kim, H., and Lee, S., 2011. Exploiting Taxonomic Knowledge for Personalized Search: A Bayesian Belief Network-based Approach. Journal of Information Science and Engineering, 27, 1413-1433.
- Lee, J., Kim, H., and Lee, S., 2011. Exploiting Taxonomic Knowledge for Personalized Search: A Bayesian Belief Network-based Approach. Journal of Information Science and Engineering, 27, 1413-1433.
- Liu, T-Y., 2011. Learning to rank for Information Retrieval. Springer.
- Liu, T-Y., 2011. Learning to rank for Information Retrieval. Springer.
- Ma, W. J., Beck, J. M., Latham, P. E., and Pouget, A., 2006. Bayesian inference with probabilistic population codes. Nat. Neurosci., 9, 1432-1438.
- Ma, W. J., Beck, J. M., Latham, P. E., and Pouget, A., 2006. Bayesian inference with probabilistic population codes. Nat. Neurosci., 9, 1432-1438.
- Meng, W., Yu, C., and Liu, K., 2002. Building efficient and effective metasearch engines. ACM Computing Surveys, 34, 1, 48-89.
- Meng, W., Yu, C., and Liu, K., 2002. Building efficient and effective metasearch engines. ACM Computing Surveys, 34, 1, 48-89.
- Metzler, D., Turtle, H., and Croft, W. B., 2005. Indri: A language-model based search engine for complex queries (extended version). IR 407, University of Massachusetts.
- Metzler, D., Turtle, H., and Croft, W. B., 2005. Indri: A language-model based search engine for complex queries (extended version). IR 407, University of Massachusetts.
- Navigli, R., and Ponzetto, S. P., 2010. BabelNet: building a very large multilingual semantic network. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics (ACL 2010), 216-225.
- Navigli, R., and Ponzetto, S. P., 2010. BabelNet: building a very large multilingual semantic network. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics (ACL 2010), 216-225.
- Niedermayer, D., 2008. Innovations in Bayesian Networks. Springer.
- Niedermayer, D., 2008. Innovations in Bayesian Networks. Springer.
- Porter, M.F., 1980. An algorithm for suffix stripping. Program, 14, 3, 130-137.
- Porter, M.F., 1980. An algorithm for suffix stripping. Program, 14, 3, 130-137.
- Strohman, T., Metzler, D., Turtle, H., and Croft, B., 2005. Indri: A Language Model-based Search Engine for Complex Queries. In Proceedings of the International Conference on Intelligence Analysis (May 2-6, 2005), McLean, VA.
- Strohman, T., Metzler, D., Turtle, H., and Croft, B., 2005. Indri: A Language Model-based Search Engine for Complex Queries. In Proceedings of the International Conference on Intelligence Analysis (May 2-6, 2005), McLean, VA.
- Suchanek, F. M., Kasneci, G., and Weikum, G., 2007. YAGO: A core of semantic knowledge. In Proceedings of the 16th International Conference on WWW, 697-706.
- Suchanek, F. M., Kasneci, G., and Weikum, G., 2007. YAGO: A core of semantic knowledge. In Proceedings of the 16th International Conference on WWW, 697-706.
- Tebaldi, C., and West, M., 1998. Bayesian Inference of Network Traffic Using Link Data. In the Journal of the American Statistical Association, 557-573.
- Tebaldi, C., and West, M., 1998. Bayesian Inference of Network Traffic Using Link Data. In the Journal of the American Statistical Association, 557-573.
- Teevan, J. B., 2011. Improving Information Retrieval with Textual Analysis: Bayesian Models and Beyond. Master's Thesis, Department of Electrical Engineering, MIT Press.
- Teevan, J. B., 2011. Improving Information Retrieval with Textual Analysis: Bayesian Models and Beyond. Master's Thesis, Department of Electrical Engineering, MIT Press.
- Turtle, H. R., 1991. Inference Networks for Document Retrieval. Ph.D. Thesis.
- Turtle, H. R., 1991. Inference Networks for Document Retrieval. Ph.D. Thesis.
Paper Citation
in Harvard Style
Makris C., Plegas Y., Tzimas G. and Viennas E. (2013). SerfSIN: Search Engines Results' Refinement using a Sense-driven Inference Network . In Proceedings of the 9th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST, ISBN 978-989-8565-54-9, pages 222-232. DOI: 10.5220/0004365502220232
in Harvard Style
Makris C., Plegas Y., Tzimas G. and Viennas E. (2013). SerfSIN: Search Engines Results' Refinement using a Sense-driven Inference Network . In Proceedings of the 9th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST, ISBN 978-989-8565-54-9, pages 222-232. DOI: 10.5220/0004365502220232
in Bibtex Style
@conference{webist13,
author={Christos Makris and Yannis Plegas and Giannis Tzimas and Emmanouil Viennas},
title={SerfSIN: Search Engines Results' Refinement using a Sense-driven Inference Network},
booktitle={Proceedings of the 9th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,},
year={2013},
pages={222-232},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004365502220232},
isbn={978-989-8565-54-9},
}
in Bibtex Style
@conference{webist13,
author={Christos Makris and Yannis Plegas and Giannis Tzimas and Emmanouil Viennas},
title={SerfSIN: Search Engines Results' Refinement using a Sense-driven Inference Network},
booktitle={Proceedings of the 9th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,},
year={2013},
pages={222-232},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004365502220232},
isbn={978-989-8565-54-9},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 9th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,
TI - SerfSIN: Search Engines Results' Refinement using a Sense-driven Inference Network
SN - 978-989-8565-54-9
AU - Makris C.
AU - Plegas Y.
AU - Tzimas G.
AU - Viennas E.
PY - 2013
SP - 222
EP - 232
DO - 10.5220/0004365502220232
in EndNote Style
TY - CONF
JO - Proceedings of the 9th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,
TI - SerfSIN: Search Engines Results' Refinement using a Sense-driven Inference Network
SN - 978-989-8565-54-9
AU - Makris C.
AU - Plegas Y.
AU - Tzimas G.
AU - Viennas E.
PY - 2013
SP - 222
EP - 232
DO - 10.5220/0004365502220232