Popularity Growth Patterns of YouTube Videos - A Category-based Study
Shaiful Alam Chowdhury, Dwight Makaroff
2013
Abstract
Understanding the growth pattern of content popularity has become a subject of immense interest to Internet service providers, content makers and on-line advertisers. This understanding is important for the sustainable deployment of content distribution systems. A significant amount of research has been done in analyzing the popularity growth patterns of YouTube videos. Unfortunately, little work has been done that investigates the popularity patterns of YouTube videos based on video object category. In this paper, we perform an in-depth analysis of the popularity pattern of YouTube videos, considering video categories. We find that the time varying popularity of different YouTube categories are different from each other. For some categories, views at early ages can be used to predict future popularity, whereas for some other categories, predicting future popularity is a challenging task and requires more sophisticated techniques (e.g. time-series clustering). The outcomes of these analyses can be instrumental towards designing a reliable workload generator, which can be further used to evaluate different caching policies and distribution mechanism for YouTube and similar sites.
References
- Abhari, A. and Soraya, M. (2010). Workload Generation for YouTube. Multimedia Tools and Applications, 46(1):91-118.
- Borghol, Y., Mitra, S., Ardon, S., Carlsson, N., Eager, D., and Mahanti, A. (2011). Characterizing and Modelling Popularity of User-Generated Videos. Performance Evaluation, 68:1037-1055.
- Brodersen, A., Scellato, S., and Wattenhofer, M. (2012). YouTube Around the World: Geographic Popularity of Videos. In World-Wide Web 2012, pages 241-250, Lyon, France.
- Broxton, T., Interian, Y., Vaver, J., and Wattenhofer, M. (2010). Catching a viral video. In IEEE Data Mining Workshops, pages 296-304, Sydney, Australia.
- Cha, M., Kwok, H., Rodriguez, P., Ahn, Y., and Moon, S. (2009). Analyzing the Video Popularity Characteristics of Large-Scale User Generated Content Systems. IEEE/ACM Trans. Netw., 17(5):1357-1370.
- Cheng, X., Dale, C., and Liu, J. (2007). Understanding the Characteristics of Internet Short Video Sharing: YouTube as a Case Study. Technical report, Cornell University, arXiv e-prints.
- Chu, K. K. W. and Wong, M. H. (1999). Fast time-series searching with scaling and shifting. In ACM PODS 1999, pages 237-248, Philadelphia, PA.
- Ding, Y., Du, Y., Hu, Y., Liu, Z., Wang, L., Ross, K., and Ghose, A. (2011). Broadcast Yourself: Understanding YouTube Uploaders. In ACM IMC 2011, pages 361- 370, Berlin, Germany.
- Figueiredo, F., Benevenuto, F., and Almeida, J. (2011). The Tube over Time: Characterizing Popularity Growth of Youtube Videos. In ACM WSDM 2011, pages 745- 754, Hong Kong, China.
- Gember, A., Anand, A., and Akella, A. (2011). A Comparative Study of Handheld and Non-handheld Traffic in Campus Wi-Fi Networks. In PAM 2011, pages 173- 183, Atlanta, GA.
- Gill, P., Arlitt, M., Li, Z., and Mahanti, A. (2007). Youtube Traffic Characterization: A View From the Edge. In ACM IMC 2007, pages 15-28, San Diego, CA.
- Gummadi, K. P., Dunn, R. J., Saroiu, S., Gribble, S. D., Levy, H. M., and Zahorjan, J. (2003). Measurement, modeling, and analysis of a peer-to-peer filesharing workload. In ACM SOSP 2003, pages 314- 329, Bolton Landing, NY.
- Khemmarat, S., Zhou, R., Gao, L., and Zink, M. (2011). Watching User Generated Videos with Prefetching. In ACM MMSYS 2011, pages 187-198, San Jose, CA.
- Labovitz, C., Iekel-Johnson, S., McPherson, D., Oberheide, J., and Jahanian, F. (2010). Internet Inter-Domain Traffic. In ACM SIGCOMM 2010, pages 75-86, New Delhi, India.
- Maier, G., Schneider, F., and Feldmann, A. (2010). A First Look at Mobile Hand-held Device Traffic. In PAM 2010, pages 161-170, Zurich, Switzerland.
- Siersdorfer, S., Chelaru, S., Nejdl, W., and Pedro, J. S. (2010). How Useful are Your Comments?: Analyzing and Predicting YouTube Comments and Comment Ratings. In World-Wide Web 2010, pages 891-900, Raleigh, NC.
- Szabo, G. and Huberman, B. (2010). Predicting the popularity of online content. CACM, 53(8):80-88.
- Yang, J. and Leskovec, J. (2011). Patterns of temporal variation in online media. In ACM WSDM 2011, pages 177-186, Hong Kong, China.
- Zink, M., Suh, K., Gu, Y., and Kurose, J. (2009). Characteristics of YouTube Network Traffic at a Campus Network - Measurements, Models, and Implications. Computer Networks, 53(4):501-514.
Paper Citation
in Harvard Style
Chowdhury S. and Makaroff D. (2013). Popularity Growth Patterns of YouTube Videos - A Category-based Study . In Proceedings of the 9th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST, ISBN 978-989-8565-54-9, pages 233-242. DOI: 10.5220/0004372802330242
in Bibtex Style
@conference{webist13,
author={Shaiful Alam Chowdhury and Dwight Makaroff},
title={Popularity Growth Patterns of YouTube Videos - A Category-based Study},
booktitle={Proceedings of the 9th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,},
year={2013},
pages={233-242},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004372802330242},
isbn={978-989-8565-54-9},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 9th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,
TI - Popularity Growth Patterns of YouTube Videos - A Category-based Study
SN - 978-989-8565-54-9
AU - Chowdhury S.
AU - Makaroff D.
PY - 2013
SP - 233
EP - 242
DO - 10.5220/0004372802330242