Simple Gestalt Algebra

Eckart Michaelsen, Vera V. Yashina

2013

Abstract

The laws of Gestalt perception rule how parts are assembled into a perceived aggregate. This contribution defines them in an algebraic setting. Operations are defined for mirror symmetry and repetition in rows respectively. Deviations from the ideal case are handled using positive and differentiable assessment functions achieving maximal value for the ideal case and approaching zero if the parts mutually violate the Gestalt laws. Practically, these definitions and calculations can be used in two ways: 1. Images with Gestalts can be rendered by using random decisions with the assessment functions as densities; 2. given an image (in which Gestalts are supposed) Gestalt-terms are constructed successively, and the ones with high assessment values are accepted as plausible, and thus rec-ognized.

References

  1. Birkhoff G., Lipson J. D.: Heterogeneous Algebras. Journal of Combinatorial Theory, Vol.8, 1970. pp. 115-133.
  2. Desolneux A., Moisan L., Morel J.-M.: From Gestalt Theory to Image Analysis. Springer, Berlin, 2008.
  3. Grenander U.: General Pattern Theory. Oxford Science Publications, 1994.
  4. Malcev A. I.: Algebraic Systems. Nauka, Moscow, 1970; Springer, Berlin, 1973.
  5. Michaelsen E., Doktorski L., Luetjen K.: An Accumulating Interpreter for Cognitive Vision Production Systems. Pattern Recognition and Image Analysis, 2012, Vol. 22, No. 3, pp. 464-469.
  6. Michaelsen E., Meidow J.: Basic Definitions and Operations for Gestalt Algebra. In: Gourevich I., Niemann H., Salvetti O. (eds.): IMTA 2009 - Image Mining Theory and Applications. Lisbon, 2009. pp. 53-26.
  7. Michaelsen E.: On the Construction of Gestalt-Algebra Instances and a Measure for their Similarity. In: Gurevich I., Niemann H., Salvetti O. (eds.): IMTA 2010 - Image Mining Theory and Applications. Angers, May 2010. pp. 51-59.
  8. Ritter G. X.: Image Algebra. Online at: http://www.cise.ufl.edu/jnw/CVAIIA/ (accessed 30.12.2012), 1993.
  9. Ritter G. X., Wilson J.N.: Handbook of Computer Vision Algorithms in Image Algebra, 2- d Edition. CRC Press Inc., 2001.
  10. Wertheimer M.: Untersuchungen zur Lehre der Gestalt, II. Psychologische Forschung, Vol. 4 , 1923. pp. 301-350.
Download


Paper Citation


in Harvard Style

Michaelsen E. and V. Yashina V. (2013). Simple Gestalt Algebra . In Proceedings of the 4th International Workshop on Image Mining. Theory and Applications - Volume 1: IMTA-4, (VISIGRAPP 2013) ISBN 978-989-8565-50-1, pages 38-47. DOI: 10.5220/0004393300380047


in Bibtex Style

@conference{imta-413,
author={Eckart Michaelsen and Vera V. Yashina},
title={Simple Gestalt Algebra},
booktitle={Proceedings of the 4th International Workshop on Image Mining. Theory and Applications - Volume 1: IMTA-4, (VISIGRAPP 2013)},
year={2013},
pages={38-47},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004393300380047},
isbn={978-989-8565-50-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 4th International Workshop on Image Mining. Theory and Applications - Volume 1: IMTA-4, (VISIGRAPP 2013)
TI - Simple Gestalt Algebra
SN - 978-989-8565-50-1
AU - Michaelsen E.
AU - V. Yashina V.
PY - 2013
SP - 38
EP - 47
DO - 10.5220/0004393300380047