Parametric Fault Detection in Nonlinear Systems - A Recursive Subspace-based Approach

Paulo Gil, Fábio Santos, Alberto Cardoso, Luis Palma

2013

Abstract

This paper deals with the problem of detecting nolinear systems’ parametric faults modeled as changes in the eigenvalues of a local linear state-space model. The linear state-space model approximations are obtained by recursive subspace system identification techniques, from which the eigenvalues are extracted at each sampling time. Residuals are generated by comparing the eigenvalues against those associated with a local nominal model derived from a neural network predictor describing the nonlinear plant dynamics in free fault conditions. Parametric fault symptoms are generated from the eigenvalues residuals, whenever a given predefined threshold is exceeded. The feasibility and effectiveness of the proposed framework is demonstrated in a practical case study.

References

  1. Bart De Moor, Peter Van Overschee, W. F. (1999). Algorithms for subspace state space system identification - an overview. In Datta, B. N., editor, Applied and Computational Control, Signals and Circuits: Volume 1: Vol 1, volume Vol. 1. Birkhauser.
  2. Basseville, M., Abdelghani, M., and Benveniste, A. (2000). Subspace-based fault detection algorithms for vibration monitoring. Automatica, 36(1):101 - 109.
  3. Basseville, M., Benveniste, A., Goursat, M., and Mevel, L. (2007). Subspace-based algorithms for structural identification, damage detection, and sensor data fusion. EURASIP J. Appl. Signal Process., 2007(1):200-200.
  4. Brito Palma, L., Coito, F., and Neves da Silva, R. (2005). Diagnosis of parametric faults based on identification and statistical methods. In Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC 7805. 44th IEEE Conference on, pages 3838 - 3843.
  5. Chen, J. and Patton, R. (1999). Robust Model-Based Fault Diagnosis for Dynamic Systems. Kluwer Academic Publishers.
  6. Chen, T., Chen, H., and wen Liu, R. (1995). Approximation capability in c(r macr;n) by multilayer feedforward networks and related problems. Neural Networks, IEEE Transactions on, 6(1):25 -30.
  7. Dong, Q., Matsui, K., and Huang, X. (2002). Existence and stability of periodic solutions for hopfield neural network equations with periodic input. Nonlinear Analysis: Theory, Methods & Applications, 49(4):471 479.
  8. dos Santos, P. and de Carvalho, J. (2003). Improving the numerical efficiency of the b and d estimates produced by the combined deterministic-stochastic subspace identification algorithms. In Decision and Control, 2003. Proceedings. 42nd IEEE Conference on, volume 4, pages 3473 - 3478 vol.4.
  9. Gertler, J. (1998). Fault Detection and Diagnosis in Engineering Systems. Marcel Dekker.
  10. Hwang, I., Kim, S., Kim, Y., and Seah, C. (2010). A survey of fault detection, isolation, and reconfiguration methods. Control Systems Technology, IEEE Transactions on, 18(3):636 -653.
  11. Isermann, R. (1997). Supervision, fault-detection and faultdiagnosis methods: An introduction. Control Engineering Practice, 5(5):639 - 652.
  12. Isermann, R. (2011). Fault-Diagnosis Applications. Springer-Verlag.
  13. Isermann, R. and Ballé, P. (1997). Trends in the application of model-based fault detection and diagnosis of technical processes. Control Engineering Practice, 5(5):709 - 719.
  14. Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. (1993). Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks, 6(6):861 - 867.
  15. Mercère, G. (2005). Contribution à l'identification récursive des systèmes par l'approche des sousespaces (in French). PhD thesis, Université des Sciences et Technologie de Lille, France.
  16. Mercère, G., Bako, L., and Lecoeuche, S. (2008). Propagator-based methods for recursive subspace model identification. Signal Processing, 88(3):468- 491.
  17. Mercère, G., Lecoeuche, S., and Lovera, M. (2004). Recursive subspace identification based on instrumental variable unconstrained quadratic optimization. International Journal of Adaptive Control and Signal Processing, 18(9-10):771-797.
  18. Mercère, G. and Lovera, M. (2007). Convergence analysis of instrumental variable recursive subspace identification algorithms. Automatica, 43(8):1377 - 1386.
  19. Montgomery, D. C. (2001). Introduction to Statistical Quality. John Wiley & Sons.
  20. Moor, B. D., Overschee, P., and Favoreel, W. (1999). Algorithms for subspace state-space identification: An overview. In Datta, B. N., editor, Applied and computational control, signals, and circuits, volume 1, chapter 6, pages 247 - 311. Birkhuser.
  21. Munier, J. and Delisle, G. (1991). Spatial analysis using new properties of the cross-spectral matrix. Signal Processing, IEEE Transactions on, 39(3):746 -749.
  22. Oku, H. and Kimura, H. (2002). Recursive 4sid algorithms using gradient type subspace tracking. Automatica, 38(6):1035 - 1043.
Download


Paper Citation


in Harvard Style

Gil P., Santos F., Cardoso A. and Palma L. (2013). Parametric Fault Detection in Nonlinear Systems - A Recursive Subspace-based Approach . In Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8565-70-9, pages 82-88. DOI: 10.5220/0004422100820088


in Bibtex Style

@conference{icinco13,
author={Paulo Gil and Fábio Santos and Alberto Cardoso and Luis Palma},
title={Parametric Fault Detection in Nonlinear Systems - A Recursive Subspace-based Approach},
booktitle={Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2013},
pages={82-88},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004422100820088},
isbn={978-989-8565-70-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Parametric Fault Detection in Nonlinear Systems - A Recursive Subspace-based Approach
SN - 978-989-8565-70-9
AU - Gil P.
AU - Santos F.
AU - Cardoso A.
AU - Palma L.
PY - 2013
SP - 82
EP - 88
DO - 10.5220/0004422100820088