Agent based Simulations of Epidemics on a Large Scale - Toward the Right Choice of Parameters

Robert Elsässer, Adrian Ogierman, Michael Meier

2013

Abstract

In a world where epidemic outbreaks may take many lives, forecasting and analysis tools are of high importance - for an urban area such as New York City, a continent like Africa, as well as for the world itself. Such tools provide valuable insight on different levels and help to establish and improve embankment mechanisms. In this paper, we present an agent-based algorithmic framework to simulate the spread of epidemic diseases. Based on the population structure of Germany, we investigate the impact of the number of agents, representing the population, on the quality of the simulation. Real world data provided by the Robert Koch Institute (Arbeitsgemeinschaft Influenza, 2011; Robert Koch Institute, 2012) is used to evaluate our results. In a second step we empirically analyze the effects of certain non-pharmaceutical countermeasures as applied in the USA against the Influenza Pandemic in 1918-1919 (Markel et al., 2007). Our simulation and evaluation tool partially relies on the probabilistic movement model presented in (Elsässer and Ogierman, 2012). Based on our empirical tests, we conclude that the amount of agents in use can have a huge impact on the accuracy of the achieved simulation results. This reveals several challenges, which have to be taken into account in the design of forecasting and analysis tools for the spread of epidemics. On the other hand, we show that by utilizing the right parameters in our algorithmic framework - some of them being obtained from real world observations (Eubank et al., 2004) - one can efficiently approximate the course of a disease in real world.

References

  1. Adamic, L. A. and Huberman, B. A. (2000). Powerlaw distribution of the world wide web. Science, 287(5461):2115.
  2. Ajelli, M., Goncalves, B., Balcan, D., Colizza, V., Hu, H., Ramasco, J., Merler, S., and Vespignani, A. (2010). Comparing large-scale computational approaches to epidemic modeling: Agent-based versus structured metapopulation models. BMC Infectious Diseases, 10(190).
  3. Amaral, L. A., Scala, A., Barthelemy, M., and Stanley, H. E. (2000). Classes of small-world networks. PNAS, 97(21):11149-11152.
  4. Arbeitsgemeinschaft Influenza (2011). Bericht zur Epidemiologie der Influenza in Deutschland Saison 2010/11.
  5. Balcan, D., Hu, H., Goncalves, B., Bajardi, P., Poletto, C., Ramasco, J. J., Paolotti, D., Perra, N., Tizzoni, M., den Broeck, W. V., Colizza, V., and Vespignani, A. (2009). Seasonal transmission potential and activity peaks of the new influenza A(H1N1): a Monte Carlo likelihood analysis based on human mobility. BMC Medicine, 7:45.
  6. Bobashev, G. V., Goedecke, D. M., Yu, F., and Epstein, J. M. (2007). A hybrid epidemic model: combining the advantages of agent-based and equation-based approaches. In Proc. WSC 7807, pages 1532-1537.
  7. Borgs, C., Chayes, J., Ganesh, A., and Saberi, A. (2010). How to distribute antidote to control epidemics. Random Struct. Algorithms, 37:204-222.
  8. Chowell, G., Hyman, J. M., Eubank, S., and CastilloChavez, C. (2003). Scaling laws for the movement of people between locations in a large city. Physical Review E, 68(6):661021-661027.
  9. Elsässer, R. and Ogierman, A. (2012). The impact of the power law exponent on the behavior of a dynamic epidemic type process. In Proc. SPAA'12.
  10. Eubank, S., Guclu, H., Kumar, V., Marathe, M., Srinivasan, A., Toroczkai, Z., and Wang, N. (2004). Modelling disease outbreaks in realistic urban social networks. Nature, 429(6988):180-184.
  11. Faloutsos, M., Faloutsos, P., and Faloutsos, C. (1999). On power-law relationships of the internet topology. In SIGCOMM 7899, pages 251-262.
  12. Germann, T. C., Kadau, K., Longini, I. M., and Macken, C. A. (2006). Mitigation strategies for pandemic influenza in the United States. PNAS, 103(15).
  13. Grassberger, P. (1983). On the critical behavior of the general epidemic process and dynamical percolation. Mathematical Biosciences, 63(2):157 - 172.
  14. Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM Review, 42(4):599-653.
  15. Jaffry, S. W. and Treur, J. (2008). Agent-Based and Population-Based Simulation: A Comparative Case Study for Epidemics. In Louca, L. S., Chrysanthou, Y., Oplatkova, Z., and Al-Begain, K., editors, ECMS'08, pages 123-130.
  16. Lee, B. Y., Bedford, V. L., Roberts, M. S., and Carley, K. M. (2008). Virtual epidemic in a virtual city: simulating the spread of influenza in a us metropolitan area. Translational Research, 151(6):275 - 287.
  17. Lee, B. Y., Brown, S. T., Cooley, P. C., Zimmerman, R. K., Wheaton, W. D., Zimmer, S. M., Grefenstette, J. J., Assi, T.-M., Furphy, T. J., Wagener, D. K., and Burke, D. S. (2010). A computer simulation of employee vaccination to mitigate an influenza epidemic. American Journal of Preventive Medicine, 38(3):247 - 257.
  18. Markel, H., Lipman, H. B., Navarro, J. A., Sloan, A., Michalsen, J. R., Stern, A. M., and Cetron, M. S. (2007). Nonpharmaceutical Interventions Implemented by US Cities During the 1918-1919 Influenza Pandemic. JAMA, 298(6):644-654.
  19. Newman, M. E. J. (2002). Spread of epidemic disease on networks. Phys. Rev. E, 66(1):016128.
  20. Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45(2):167-256.
  21. Ripeanu, M., Foster, I., and Iamnitchi, A. (2002). Mapping the gnutella network: Properties of large-scale peerto-peer systems and implications for system. IEEE Internet Computing Journal, 6(1):50-57.
  22. Robert Koch Institute (2012). SurvStat@RKI. A web-based solution to query surveillance data in Germany.
Download


Paper Citation


in Harvard Style

Elsässer R., Ogierman A. and Meier M. (2013). Agent based Simulations of Epidemics on a Large Scale - Toward the Right Choice of Parameters . In Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH, ISBN 978-989-8565-69-3, pages 263-274. DOI: 10.5220/0004429402630274


in Bibtex Style

@conference{simultech13,
author={Robert Elsässer and Adrian Ogierman and Michael Meier},
title={Agent based Simulations of Epidemics on a Large Scale - Toward the Right Choice of Parameters},
booktitle={Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,},
year={2013},
pages={263-274},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004429402630274},
isbn={978-989-8565-69-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,
TI - Agent based Simulations of Epidemics on a Large Scale - Toward the Right Choice of Parameters
SN - 978-989-8565-69-3
AU - Elsässer R.
AU - Ogierman A.
AU - Meier M.
PY - 2013
SP - 263
EP - 274
DO - 10.5220/0004429402630274