Computational Experience in Solving Continuous-time Algebraic Riccati Equations using Standard and Modified Newton’s Method

Vasile Sima

2013

Abstract

Improved algorithms for solving continuous-time algebraic Riccati equations using Newton’s method with or without line search are discussed. The basic theory and Newton’s algorithms are briefly presented. Algorithmic details the developed solvers are based on, the main computational steps (finding the Newton direction, finding the Newton step size), and convergence tests are described. The main results of an extensive performance investigation of the solvers based on Newton’s method are compared with those obtained using the widely-used MATLAB solver. Randomly generated systems with orders till 2000, as well as the systems from a large collection of examples, are considered. The numerical results often show significantly improved accuracy, measured in terms of normalized and relative residuals, and greater efficiency than the MATLAB solver. The results strongly recommend the use of such algorithms, especially for improving the solutions computed by other solvers.

References

  1. Abels, J. and Benner, P. (1999). CAREX-A collection of benchmark examples for continuous-time algebraic Riccati equations (Version 2.0). SLICOT Working Note 1999-14, Katholieke Universiteit Leuven, ESAT/SISTA, Leuven, Belgium. Available from http://www.slicot.org.
  2. Anderson, B. D. O. and Moore, J. B. (1971). Linear Optimal Control. Prentice-Hall, Englewood Cliffs, New Jersey.
  3. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D. (1999). LAPACK Users' Guide: Third Edition. Software · Environments · Tools. SIAM, Philadelphia.
  4. Arnold, III, W. F. and Laub, A. J. (1984). Generalized eigenproblem algorithms and software for algebraic Riccati equations. Proc. IEEE, 72(12):1746-1754.
  5. Benner, P. (1997). Contributions to the Numerical Solution of Algebraic Riccati Equations and Related Eigenvalue Problems. Dissertation, Fakultät für Mathematik, Technische Universität Chemnitz-Zwickau, D-09107 Chemnitz, Germany.
  6. Benner, P. (1998). Accelerating Newton's method for discrete-time algebraic Riccati equations. In Beghi, A., Finesso, L., and Picci, G., editors, Mathematical Theory of Networks and Systems, Proceedings of the MTNS-98 Symposium held in Padova, Italy, July, 1998, pages 569-572. Il Poligrafo, Padova, Italy.
  7. Benner, P. and Byers, R. (1998). An exact line search method for solving generalized continuous-time algebraic Riccati equations. IEEE Trans. Automat. Contr., 43(1):101-107.
  8. Benner, P., Byers, R., Losse, P., Mehrmann, V., and Xu, H. (2007). Numerical solution of real skewHamiltonian/Hamiltonian eigenproblems. Technical report, Technische Universität Chemnitz, Chemnitz.
  9. Benner, P., Byers, R., Mehrmann, V., and Xu, H. (2002). Numerical computation of deflating subspaces of skew Hamiltonian/Hamiltonian pencils. SIAM J. Matrix Anal. Appl., 24(1):165-190.
  10. Benner, P., Kressner, D., Sima, V., and Varga, A. (2010). Die SLICOT-Toolboxen für Matlab. atAutomatisierungstechnik, 58(1):15-25.
  11. Benner, P., Mehrmann, V., Sima, V., Van Huffel, S., and Varga, A. (1999). SLICOT - A subroutine library in systems and control theory. In Datta, B. N., editor, Applied and Computational Control, Signals, and Circuits, volume 1, chapter 10, pages 499-539. Birkhäuser, Boston.
  12. Benner, P. and Sima, V. (2003). Solving algebraic Riccati equations with SLICOT. In CD-ROM Proceedings of The 11th Mediterranean Conference on Control and Automation MED'03, June 18-20 2003, Rhodes, Greece. Invited session IV01, “Computational Toolboxes in Control Design”, Paper IV01-01, 6 pages.
  13. Byers, R. (1987). Solving the algebraic Riccati equation with the matrix sign function. Lin. Alg. Appl., 85(1):267-279.
  14. Ciubotaru, B. and Staroswiecki, M. (2009). Comparative study of matrix Riccati equation solvers for parametric faults accommodation. In Proceedings of the 10th European Control Conference, Budapest, Hungary, pages 1371-1376.
  15. Francis, B. A. (1987). A Course in H8 Control Theory, volume 88 of Lect. Notes in Control and Information Sciences. Springer-Verlag, New York.
  16. Gardiner, J. D. and Laub, A. J. (1986). A generalization of the matrix sign function solution for algebraic Riccati equations. Int. J. Control, 44:823-832.
  17. Hammarling, S. J. (1982). Newton's method for solving the algebraic Riccati equation. NPC Report DIIC 12/82, National Physics Laboratory, Teddington, Middlesex TW11 OLW, U.K.
  18. Jónsson, G. F. and Vavasis, S. (2004). Solving polynomials with small leading coefficients. SIAM J. Matrix Anal. Appl., 26(2):400-414.
  19. Kleinman, D. L. (1968). On an iterative technique for Riccati equation computations. IEEE Trans. Automat. Contr., AC-13:114-115.
  20. Lancaster, P. and Rodman, L. (1995). The Algebraic Riccati Equation. Oxford University Press, Oxford.
  21. Lanzon, A., Feng, Y., Anderson, B. D. O., and Rotkowitz, M. (2008). Computing the positive stabilizing solution to algebraic Riccati equations with an indefinite quadratic term via a recursive method. IEEE Trans. Automat. Contr., AC-50(10):2280-2291.
  22. Laub, A. J. (1979). A Schur method for solving algebraic Riccati equations. IEEE Trans. Automat. Contr., AC24(6):913-921.
  23. Leibfritz, F. and Lipinski, W. (2003). Description of the benchmark examples in COMPleib. Technical report, Department of Mathematics, University of Trier, D54286 Trier, Germany.
  24. Leibfritz, F. and Lipinski, W. (2004). COMPleib 1.0 - User manual and quick reference. Technical report, Department of Mathematics, University of Trier, D-54286 Trier, Germany.
  25. MATLAB (2011). Control System Toolbox User's Guide. Version 9.
  26. Mehrmann, V. (1991). The Autonomous Linear Quadratic Control Problem. Theory and Numerical Solution, volume 163 of Lect. Notes in Control and Information Sciences (M. Thoma and A. Wyner, eds.). Springer-Verlag, Berlin.
  27. Mehrmann, V. and Tan, E. (1988). Defect correction methods for the solution of algebraic Riccati equations. IEEE Trans. Automat. Contr., AC-33(7):695-698.
  28. Penzl, T. (1998). Numerical solution of generalized Lyapunov equations. Advances in Comp. Math., 8:33-48.
  29. Penzl, T. (2000). LYAPACK Users Guide. Technical Report SFB393/00-33, Technische Universität Chemnitz, Sonderforschungsbereich 393, “Numerische Simulation auf massiv parallelen Rechnern”, Chemnitz.
  30. Raines, III, A. C. and Watkins, D. S. (1992). A class of Hamiltonian-symplectic methods for solving the algebraic Riccati equation. Technical report, Washington State University, Pullman, WA.
  31. Roberts, J. (1980). Linear model reduction and solution of the algebraic Riccati equation by the use of the sign function. Int. J. Control, 32:667-687.
  32. Sima, V. (1981). An efficient Schur method to solve the stabilizing problem. IEEE Trans. Automat. Contr., AC26(3):724-725.
  33. Sima, V. (1996). Algorithms for Linear-Quadratic Optimization, volume 200 of Pure and Applied Mathematics: A Series of Monographs and Textbooks. Marcel Dekker, Inc., New York.
  34. Sima, V. (2005). Computational experience in solving algebraic Riccati equations. In Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference ECC' 05, 12-15 December 2005, Seville, Spain, pages 7982-7987. Omnipress.
  35. Sima, V. (2010). Structure-preserving computation of stable deflating subspaces. In Kayacan, E., editor, Proceedings of the 10th IFAC Workshop “Adaptation and Learning in Control and Signal Processing” (ALCOSP 2010), Antalya, Turkey, 26-28 August 2010 (CD-ROM), 6 pages. IFAC-PapersOnLine, Volume 10, Part 1, http://www.ifac-papersonline.net/ Detailed/46793.html.
  36. Sima, V. (2011). Computational experience with structurepreserving Hamiltonian solvers in optimal control. In Ferrier, J.-L., Bernard, A., Gusikhin, O., and Madani, K., editors, Proceedings of the “8th International Conference on Informatics in Control, Automation and Robotics” (ICINCO 2011), Noordwijkerhout, The Netherlands, 28-31 July, 2011 (CD-ROM), volume 1, pages 91-96. SciTePress-Science and Technology Publications.
  37. Sima, V. and Benner, P. (2006). A SLICOT implementation of a modified Newton's method for algebraic Riccati equations. In Proceedings of the 14th Mediterranean Conference on Control and Automation MED'06, June 28-30 2006, Ancona, Italy (CDROM). Omnipress. Session FEA2: Control Systems 5, Paper FEA2-3.
  38. Sima, V. and Benner, P. (2008). Experimental evaluation of new SLICOT solvers for linear matrix equations based on the matrix sign function. In Proceedings of 2008 IEEE Multi-conference on Systems and Control. 9th IEEE International Symposium on ComputerAided Control Systems Design (CACSD), Hilton Palacio del Rio Hotel, San Antonio, Texas, U.S.A., September 3-5, 2008, pages 601-606. Omnipress.
  39. Van Dooren, P. (1981). A generalized eigenvalue approach for solving Riccati equations. SIAM J. Sci. Stat. Comput., 2(2):121-135.
  40. Van Huffel, S. and Sima, V. (2002). SLICOT and control systems numerical software packages. In Proceedings of the 2002 IEEE International Conference on Control Applications and IEEE International Symposium on Computer Aided Control System Design, CCA/CACSD 2002, September 18-20, 2002, Scottish Exhibition and Conference Centre, Glasgow, Scotland, U.K., pages 39-44. Omnipress.
  41. Van Huffel, S., Sima, V., Varga, A., Hammarling, S., and Delebecque, F. (2004). High-performance numerical software for control. IEEE Control Syst. Mag., 24(1):60-76.
  42. Varga, A. (1981b). A Schur method for pole assignment. IEEE Trans. Automat. Contr., AC-26(2):517-519.
Download


Paper Citation


in Harvard Style

Sima V. (2013). Computational Experience in Solving Continuous-time Algebraic Riccati Equations using Standard and Modified Newton’s Method . In Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8565-70-9, pages 5-16. DOI: 10.5220/0004482500050016


in Bibtex Style

@conference{icinco13,
author={Vasile Sima},
title={Computational Experience in Solving Continuous-time Algebraic Riccati Equations using Standard and Modified Newton’s Method},
booktitle={Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2013},
pages={5-16},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004482500050016},
isbn={978-989-8565-70-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Computational Experience in Solving Continuous-time Algebraic Riccati Equations using Standard and Modified Newton’s Method
SN - 978-989-8565-70-9
AU - Sima V.
PY - 2013
SP - 5
EP - 16
DO - 10.5220/0004482500050016