Wall Estimation from Stereo Vision in Urban Street Canyons

Tobias Schwarze, Martin Lauer

2013

Abstract

Geometric context has been recognised as important high-level knowledge towards the goal of scene understanding. In this work we present two approaches to estimate the local geometric structure of urban street canyons captured from a head-mounted stereo camera. A dense disparity estimation is the only input for both approaches. First, we show how the left and right building facade can be obtained by planar segmentation based on random sampling. In a second approach we transform the disparity into an elevation map from which we extract the main building orientation. We evaluate both approaches on a set of challenging inner city scenes and demonstrate how visual odometry can be incorporated to keep track of the estimated geometry.

References

  1. Barinova, O., Lempitsky, V., Tretiak, E., and Kohli, P. (2010). Geometric image parsing in man-made environments. ECCV'10, pages 57-70, Berlin, Heidelberg. Springer-Verlag.
  2. Borrmann, D., Elseberg, J., Lingemann, K., and Nüchter, A. (2011). The 3d hough transform for plane detection in point clouds: A review and a new accumulator design. 3D Res., 2(2):32:1-32:13.
  3. Chumerin, N. and Van Hulle, M. M. (2008). Ground Plane Estimation Based on Dense Stereo Disparity. ICNNAI'08, pages 209-213, Minsk, Belarus.
  4. Cornelis, N., Leibe, B., Cornelis, K., and Gool, L. V. (2008). 3d urban scene modeling integrating recognition and reconstruction. International Journal of Computer Vision, 78(2-3):121-141.
  5. Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM, 24(6):381-395.
  6. Geiger, A., Lauer, M., and Urtasun, R. (2011a). A generative model for 3d urban scene understanding from movable platforms. In CVPR'11, Colorado Springs, USA.
  7. Geiger, A., Ziegler, J., and Stiller, C. (2011b). Stereoscan: Dense 3d reconstruction in real-time. In IEEE Intelligent Vehicles Symposium, Baden-Baden, Germany.
  8. Gutmann, J.-S., Fukuchi, M., and Fujita, M. (2008). 3d perception and environment map generation for humanoid robot navigation. I. J. Robotic Res., 27(10):1117-1134.
  9. Hoiem, D., Efros, A. A., and Hebert, M. (2007). Recovering surface layout from an image. International Journal of Computer Vision, 75:151-172.
  10. Hoover, A., Jean-baptiste, G., Jiang, X., Flynn, P. J., Bunke, H., Goldgof, D., Bowyer, K., Eggert, D., Fitzgibbon, A., and Fisher, R. (1996). An experimental comparison of range image segmentation algorithms.
  11. Hough, P. (1962). Method and Means for Recognizing Complex Patterns. U.S. Patent 3.069.654.
  12. Iocchi, L., Konolige, K., and Bajracharya, M. (2000). Visually realistic mapping of a planar environment with stereo. In ISER, volume 271, pages 521-532.
  13. Labayrade, R., Aubert, D., and Tarel, J.-P. (2002). Real time obstacle detection in stereovision on non flat road geometry through ”v-disparity” representation. In Intelligent Vehicle Symposium, 2002. IEEE, volume 2, pages 646 - 651 vol.2.
  14. Lee, D. C., Hebert, M., and Kanade, T. (2009). Geometric reasoning for single image structure recovery. In CVPR'09.
  15. Murray, D. R. and Little, J. J. (2004). Environment modeling with stereo vision. IROS'04.
  16. Poppinga, J., Vaskevicius, N., Birk, A., and Pathak, K. (2008). Fast plane detection and polygonalization in noisy 3d range images. IROS'08.
  17. Schindler, K. and Bischof, H. (2003). On robust regression in photogrammetric point clouds. In Michaelis, B. and Krell, G., editors, DAGM-Symposium, volume 2781 of Lecture Notes in Computer Science, pages 172-178. Springer.
  18. Se, S. and Brady, M. (2002). Ground plane estimation, error analysis and applications. Robotics and Autonomous Systems, 39(2):59-71.
Download


Paper Citation


in Harvard Style

Schwarze T. and Lauer M. (2013). Wall Estimation from Stereo Vision in Urban Street Canyons . In Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-8565-71-6, pages 83-90. DOI: 10.5220/0004484600830090


in Bibtex Style

@conference{icinco13,
author={Tobias Schwarze and Martin Lauer},
title={Wall Estimation from Stereo Vision in Urban Street Canyons},
booktitle={Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2013},
pages={83-90},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004484600830090},
isbn={978-989-8565-71-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Wall Estimation from Stereo Vision in Urban Street Canyons
SN - 978-989-8565-71-6
AU - Schwarze T.
AU - Lauer M.
PY - 2013
SP - 83
EP - 90
DO - 10.5220/0004484600830090