Distributed Localization and Scene Reconstruction from RGB-D Data

Sergio Ayuso, Carlos Sagüés, Rosario Aragüés

2013

Abstract

In this paper we present a method to make every robot of a team to compute a global 3D map of the scenarios explored by all the members, obtaining also the trajectories of the team. Every robot has a RGB-D device on board which gives RGB and depth data simultaneously and uses this information to build its own local map in real time. Once all robots have formed their local maps, they start a communication process to transform all maps to a common reference and merge them. The interest of this work is related to the establishment of the global reference and the management of the local point clouds to get correspondences between local maps which make possible to obtain the best possible transformation from the reference of every robot to the global reference.

References

  1. Alriksson, P. and Rantzer, A. (2006). Distributed Kalman filtering using weighted averaging. In Int. Symposium on Mathematical Theory of Networks and Systems, Kyoto, Japan.
  2. Bailey, T., Nebot, E. M., Rosenblatt, J. K., and DurrantWhyte, H. (2000). Data association for mobile robot navigation: a graph theoretic approach. In IEEE Int. Conf. on Robotics and Automation, pages 2512-2517, San Francisco, USA.
  3. Bay, H., Tuytelaars, T., and Gool, L. V. (2006). Surf: Speeded up robust features. In European Conference on Computer Vision, pages 404-417.
  4. Besl, P. J. and Mckay, H. D. (1992). A method for registration of 3-D shapes. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 14(2):239-256.
  5. Bullo, F., Cortés, J., and Martínez, S. (2009). Distributed Control of Robotic Networks. Applied Mathematics Series. Princeton University Press. Electronically available at http://coordinationbook.info.
  6. Calafiore, G. and Abrate, F. (2009). Distributed linear estimation over sensor networks. International Journal of Control, 82(5):868-882.
  7. Carpin, S. (2008). Fast and accurate map merging for multirobot systems. Autonomous Robots, 25(3):305-316.
  8. Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM, 24(6):381-395.
  9. Fox, D., Ko, J., Konolige, K., Limketkai, B., Schulz, D., and Stewart, B. (2006). Distributed multirobot exploration and mapping. IEEE Proceedings, 94(7):1325-1339.
  10. Gil, A., Reinoso, O., Ballesta, M., and Julia, M. (2009). Multi-robot visual SLAM using a rao-blackwellized particle filter. Robotics and Autonomous Systems, 58(1):68-80.
  11. Kaess, M. and Dellaert, F. (2009). Covariance recovery from a square root information matrix for data association. Robotics and Autonomous Systems, 57(12):1198-1210.
  12. Lynch, K. M., Schwartz, I. B., Yang, P., and Freeman, R. A. (2008). Decentralized environmental modeling by mobile sensor networks. IEEE Transactions on Robotics, 24(3):710-724.
  13. Muja, M. and Lowe, D. G. (2009). Fast approximate nearest neighbors with automatic algorithm configuration. In VISAPP International Conference on Computer Vision Theory and Applications, pages 331-340.
  14. Neira, J. and Tardós, J. D. (2001). Data association in stochastic mapping using the joint compatibility test. IEEE Transactions on Robotics and Automation, 17(6):890-897.
  15. Olfati-Saber, R. (2007). Distributed Kalman filtering for sensor networks. In IEEE Conf. on Decision and Control, pages 5492-5498, New Orleans, LA.
  16. Parker, L. E. (2000). Current state of the art in distributed robotic systems. In Parker, L. E., Bekey, G., and Barhen, J., editors, Distributed Autonomous Robotic Systems 4, pages 3-12. Springer Verlag.
  17. Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler, R., and Ng, A. Y. (2009). ROS: An open-source robot operating system. In ICRA Workshop on Open Source Software.
  18. Sagues, C., Murillo, A. C., Guerrero, J. J., Goedemé, T., Tuytelaars, T., and Gool, L. V. (2006). Localization with omnidirectional images using the 1D radial trifocal tensor. In IEEE Int. Conf. on Robotics and Automation, pages 551-556, Orlando, USA.
  19. Thrun, S. and Liu, Y. (2003). Multi-robot SLAM with sparse extended information filters. In Int. Symposium of Robotics Research, pages 254-266, Sienna, Italy.
  20. Xiao, L., Boyd, S., and Lall, S. (2005). A scheme for robust distributed sensor fusion based on average consensus. In Information Processing in Sensor Networks, 2005. IPSN 2005. Fourth International Symposium on, pages 63-70.
Download


Paper Citation


in Harvard Style

Ayuso S., Sagüés C. and Aragüés R. (2013). Distributed Localization and Scene Reconstruction from RGB-D Data . In Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-8565-71-6, pages 377-384. DOI: 10.5220/0004485103770384


in Bibtex Style

@conference{icinco13,
author={Sergio Ayuso and Carlos Sagüés and Rosario Aragüés},
title={Distributed Localization and Scene Reconstruction from RGB-D Data},
booktitle={Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2013},
pages={377-384},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004485103770384},
isbn={978-989-8565-71-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Distributed Localization and Scene Reconstruction from RGB-D Data
SN - 978-989-8565-71-6
AU - Ayuso S.
AU - Sagüés C.
AU - Aragüés R.
PY - 2013
SP - 377
EP - 384
DO - 10.5220/0004485103770384