Fuzzy Model-based Algorithm for 3-D Bone Tumour Analysis
Joanna Czajkowska
2013
Abstract
In this paper, a new fuzzy model based algorithm for 3-D bone tumour segmentation in MR series is introduced. The presented segmentation procedure is based on a modified fuzzy connectedness method. The there required fuzzy affinity values are estimated using a fuzzy inference system, whose fuzzy membership functions are structured on the basis of gaussian mixture model of analyzed image regions. The 3-D fuzzy tumour model is generated using different MR modalities acquired during a single examination. The segmentation abilities of prototype system have been tested on a MR database consisting of 27 examinations composed of two different sequences each.
References
- Badura, P., Kawa, J., Czajkowska, J., Rudzki, M., and Pietka, E. (2011). Fuzzy connectedness in segmentation of medical images. In International Conference of Fuzzy Computation Theory and Applications, pages 486-492.
- Carvalho, B. M., Joe Gau, C., Herman, G. T., and Yung Kong, T. (1999). Algorithms for Fuzzy Segmentation. Pattern Analysis & Applications, 2:73-81.
- Czajkowska, J., Bugdol, M., and Pietka, E. (2012). Kernelized fuzzy c-means method and gaussian mixture model in unsupervised cascade clustering. In International Conference of Information Technologies in Biomedicine, Lecture Notes in Bioinformatics, Gliwice, Poland, pages 58-66.
- Davies, A. M., Sundaram, M., and James, S. L. J. (2009). Imaging of Bone Tumors and Tumor-Like Lesions, Techniques and Applications. Medical Radiology, Diagnostic Imaging, Springer-Verlag Berlin Heidelberg, Berlin.
- Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):1-38.
- Hata, Y., Kobashi, S., Hirano, S., Kitagaki, H., and Mori, E. (2000). Automated segmentation of human brain mr images aided by fuzzy information granulation and fuzzy inference. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 30(3):381 - 395.
- Heo, G. and Gader, P. (2010). An extension of global fuzzy c-means using kernel methods. In IEEE International Conference on Fuzzy Systems.
- Husband, J. E. and Reznek, R. H. (2004). Imaging in Oncology, volume 1. Taylor & Francis, London.
- Kickert, W. J. M. and Mamdani, E., H. (1978). Analysis of a fuzzy logic controller. Fuzzy Sets and Systems, 1(1):29 - 44.
- Ma, J., Li, M., and Zhao, Y. (2005). Segmentation of multimodality osteosarcoma mri with vectorial fuzzy-connectedness theory. Fuzzy Systems and Knowledge Discovery, Lecture Notes in Computer Science, Springer-Verlag Berlin Heidelberg, 36(14):1027-1030.
- Mari, M. and Dellepiane, S. (1996). A segmentation method based on fuzzy topology and clustering. In Pattern Recognition, 1996., Proceedings of the 13th International Conference on, volume 2, pages 565 -569 vol.2.
- McLachlan, G. and Peel, D. (2000). Finite Mixture Model. Wiley Series in Probability and Statistics.
- Pan, J. and Li, M. (2003). Segmentation of mr osteosarcoma images. In International Conference on Computational Intelligence and Multimedia Applications (ICCIMA03), IEEE.
- Pednekar, A., Kakadiaris, I. A., and Kurkure, U. (2008). Adaptive fuzzy connectedness-based medical image segmentation. In Proceedings of the Indian Conference on Computer Vision, Graphics, and Image Processing.
- Perona, P., Shiota, T., and Malik, J. (1994). Anisotropic diffusion. Geometry-Driven Diffusion in Computer VisionKluwer Academic Publishers, 3:73-92.
- Positano, V., Santarelli, M. F., Landin, L., and Benassi, A. (2000). Nonlinear anisotropic filtering as a tool for snr enhancement in cardiovascular mri. Computers in Cardiology, IEEE, pages 707-710.
- Rosenfeld, A. (1979). Fuzzy digital topology. Information and Control, 40(1):76-87.
- Saha, P. K. and Udupa, J. K. (2001). Fuzzy Connected Object Delineation: Axiomatic Path Strength Definition and the Case of Multiple Seeds. Computer Vision and Image Understanding, 83(3):275-295.
- Siler, W. and Buckley, J. J. (2005). Fuzzy Expert Systems and Fuzzy Reasoning. Wiley.
- Tolias, Y. and Panas, S. (1998). On applying spatial constraints in fuzzy image clustering using a fuzzy rule-based system. Signal Processing Letters, IEEE, 5(10):245 -247.
- Udupa, J. K., Saha, P. K., and Lotufo, R. A. (2002). Relative fuzzy connectedness and object definition: Theory, algorithms, and applications in image segmentation. IEEE Transaction on Pattern Analysis and Machine Intelligence, 24(11):1485-1500.
- Udupa, J. K. and Samarasekera, S. (1996). Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image Segmentation. Graphical Models and Image Processing, 58(3):246-261.
- Yamaguchi, K., Fujimoto, Y., Kobashi, S., Wakata, Y., Ishikura, R., Kuramoto, K., Imawaki, S., Hirota, S., and Hata, Y. (2010). Automated fuzzy logic based skull stripping in neonatal and infantile mr images. In Fuzzy Systems (FUZZ), 2010 IEEE International Conference on, pages 1 -7.
- Zhao, Y., Hong, F., and Li, M. (2003). Multimodality mri information fusion for osteosarcoma segmentation. In Biomedical Engineering, 2003. IEEE EMBS AsianPacific Conference on, pages 166 - 167.
- Zhao, Y., Hong, F., and Li, M. (2004). Segmentation of osteosarcoma based on analysis of blood-perfusion epi series. In International Conference on Communications, Circuits and Systems, ICCCAS 2004, IEEE, volume 2.
Paper Citation
in Harvard Style
Czajkowska J. (2013). Fuzzy Model-based Algorithm for 3-D Bone Tumour Analysis . In Proceedings of the 5th International Joint Conference on Computational Intelligence - Volume 1: FCTA, (IJCCI 2013) ISBN 978-989-8565-77-8, pages 185-192. DOI: 10.5220/0004498301850192
in Bibtex Style
@conference{fcta13,
author={Joanna Czajkowska},
title={Fuzzy Model-based Algorithm for 3-D Bone Tumour Analysis},
booktitle={Proceedings of the 5th International Joint Conference on Computational Intelligence - Volume 1: FCTA, (IJCCI 2013)},
year={2013},
pages={185-192},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004498301850192},
isbn={978-989-8565-77-8},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 5th International Joint Conference on Computational Intelligence - Volume 1: FCTA, (IJCCI 2013)
TI - Fuzzy Model-based Algorithm for 3-D Bone Tumour Analysis
SN - 978-989-8565-77-8
AU - Czajkowska J.
PY - 2013
SP - 185
EP - 192
DO - 10.5220/0004498301850192