Topological Study and Lyapunov Exponent of a Secure Steganographic Scheme

Jacques M. Bahi, Nicolas Friot, Christophe Guyeux

2013

Abstract

.

References

  1. Bahi, J., Friot, N., and Guyeux, C. (2012). Lyapunov exponent evaluation of a digital watermarking scheme proven to be secure. In IIH-MSP'2012, 8-th Int. Conf. on Intelligent Information Hiding and Multimedia Signal Processing, pages ***-***, PiraeusAthens, Greece. IEEE Computer Society. To appear.
  2. Bahi, J. M. and Guyeux, C. (2010). A chaos-based approach for information hiding security. arXiv No 0034939.
  3. Banks, J., Brooks, J., Cairns, G., and Stacey, P. (1992). On devaney's definition of chaos. Amer. Math. Monthly, 99:332-334.
  4. Cachin, C. (2004). An information-theoretic model for steganography. Information and Computation, 192:41 - 56.
  5. Cayre, F., Fontaine, C., and Furon, T. (2008). Kerckhoffsbased embedding security classes for woa data hiding. IEEE Transactions on Information Forensics and Security, 3(1):1-15.
  6. Devaney, R. L. (1989). An Introduction to Chaotic Dynamical Systems. Addison-Wesley, Redwood City, CA, 2nd edition.
  7. Formenti, E. (1998). Automates cellulaires et chaos : de la vision topologique la vision algorithmique. PhD thesis, Ócole Normale Suprieure de Lyon.
  8. Friot, N., Guyeux, C., and Bahi, J. (2011). Chaotic iterations for steganography - stego-security and chaossecurity. In SECRYPT'2011, Int. Conf. on Security and Cryptography, pages ***-***, Sevilla, Spain. To appear.
  9. Furon, T. (2002). Security analysis. European Project IST1999-10987 CERTIMARK, Deliverable D.5.5.
  10. Guyeux, C., Friot, N., and Bahi, J. (2010). Chaotic iterations versus spread-spectrum: chaos and stego security. In IIH-MSP'10, 6-th Int. Conf. on Intelligent Information Hiding and Multimedia Signal Processing, pages 208-211, Darmstadt, Germany.
  11. Kalker, T. (2001). Considerations on watermarking security. In Multimedia Signal Processing, 2001 IEEE Fourth Workshop on, pages 201-206.
  12. Mao, Y. and Chen, X. (2011). An encryption algorithm of chaos based on sine square mapping. In Proceedings of the 2011 Fourth International Symposium on Computational Intelligence and Design - Volume 01, ISCID 7811, pages 131-134, Washington, DC, USA. IEEE Computer Society.
  13. Martínez-N˜ onthe, J. A., Díaz-Méndez, A., Cruz-Irisson, M., Palacios-Luengas, L., Del-Río-Correa, J. L., and Vázquez-Medina, R. (2011). Cryptosystem with one dimensional chaotic maps. In Proceedings of the 4th international conference on Computational intelligence in security for information systems, CISIS'11, pages 190-197, Berlin, Heidelberg. Springer-Verlag.
  14. Mittelholzer, T. (1999). An information-theoretic approach to steganography and watermarking. In Pfitzmann, A., editor, Information Hiding, volume 1768 of Lecture Notes in Computer Science, pages 1-16, Dresden, Germany. Springer.
  15. Perez-Freire, L., Pérez-gonzalez, F., and Comesan˜, P. (2006). Secret dither estimation in lattice-quantization data hiding: A set-membership approach. In Delp, E. J. and Wong, P. W., editors, Security, Steganography, and Watermarking of Multimedia Contents, San Jose, California, USA. SPIE.
  16. Schwartz, L. (1980). Analyse: topologie générale et analyse fonctionnelle. Hermann.
  17. Shannon, C. E. (1949). Communication theory of secrecy systems. Bell Systems Technical Journal, 28:656-715.
  18. Simmons, G. J. (1984). The prisoners' problem and the subliminal channel. In Advances in Cryptology, Proc. CRYPTO'83, pages 51-67.
Download


Paper Citation


in Harvard Style

M. Bahi J., Friot N. and Guyeux C. (2013). Topological Study and Lyapunov Exponent of a Secure Steganographic Scheme . In Proceedings of the 10th International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2013) ISBN 978-989-8565-73-0, pages 275-283. DOI: 10.5220/0004504202750283


in Bibtex Style

@conference{secrypt13,
author={Jacques M. Bahi and Nicolas Friot and Christophe Guyeux},
title={Topological Study and Lyapunov Exponent of a Secure Steganographic Scheme},
booktitle={Proceedings of the 10th International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2013)},
year={2013},
pages={275-283},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004504202750283},
isbn={978-989-8565-73-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2013)
TI - Topological Study and Lyapunov Exponent of a Secure Steganographic Scheme
SN - 978-989-8565-73-0
AU - M. Bahi J.
AU - Friot N.
AU - Guyeux C.
PY - 2013
SP - 275
EP - 283
DO - 10.5220/0004504202750283