Toward a Neural Aggregated Search Model for Semi-structured Documents

F. Z. Bessai-Mechmache

2013

Abstract

One of the main issues in aggregated search for XML documents is to select the relevant elements for information need. Our objective is to gather in same aggregate relevant elements that can belong to different parts of XML document and that are semantically related. To do this, we propose a neural aggregated search model using Kohonen self-organizing maps. Kohonen self-organizing map lets classification of XML elements producing density map that form the foundations of our model.

References

  1. Ahmed, A., A., R., Bahgat, A., Abdel Latef, Abdel Mgeid, A., A., and Osman, A. S., 2008. Using Genetic Algorithm to Improve Information Retrieval Systems. World Academy of Science, Engineering and Technology 17.
  2. Agrawal, R., Gollapudi, S., Halverson, A., 2009. Diversifying Search Results, ACM Int. Conference on WSDM.
  3. Arguello, J., Diaz, F., Callan, J., 2011. Learning to aggregate vertical results into web search results. In Proceedings of the 20th ACM Conference on Information and Knowledge Management,CIKM'11, Glasgow, United Kingdom.
  4. Bangorn, K., and Quen, P., 2005. Applied genetic algorithms in information retrieval. Proceedings of International Journal of Production Research (King Mongnut's Institute of Technology, Ladkrabang, Bangkok), 43, p.4083-4101.
  5. Bessai-Mechmache F. Z., and Alimazighi, Z. 2012. Possibilistic Model for Aggregated Search in XML Documents. International Journal of Intelligent Information and Database Systems, IJIIDS, Vol. 6, No 4, pp 381-404
  6. Bessai-Mechmache, F. Z., and Alimazighi, Z. 2011. Possibilistic Networks for Aggregated Search in XML Documents. In proceedings of International Conference on Information & Communication Systems, ICICS'2011, Irbid, Jordan, pp 67-72.
  7. Clarke, C. L., Kolla, M., Cormack, G. V., Vechtomova, O., 2008. Novelty and diversity in information retrieval evaluation. SIGIR'08, p.659-666.
  8. Haykin, S., 1999. Neural Networks: A Comprehensive Foundation, Prentice Hall, ISBN 0-13-273350-1
  9. Huang, Y., Liu, Z., Chen, y., 2008. Query biased snippet generation in XML search. ACM SIGMOD, p.315- 326.
  10. Kamps, J., Marx, M., De Rijke, M., Sigurbjörnsson, B., 2003. XML Retrieval: What to retrieve? ACM SIGIR Conference on Research and Development in Information Retrieval, p.409-410.
  11. Kopliku, A., 2009. Aggregated Search: From information nuggets to aggregated documents. CORIA, p.507-514.
  12. Kopliku, A., BOUGHANEM, M., PINEL-SAUVAGNAT, K., 2011. Searching within Web pages: Retrieving attributes from HTML tables in the Web. In Conference on Information and Knowledge Management, CIKM'11, Glasgow, United Kingdom.
  13. Lalmas, M., Vannoorenberghe, P., 2004. Indexation et recherche de documents XML par les fonctions de croyance. CORIA'2004, p.143-160.
  14. Fuhr, N., Lalmas, M., Malik, S., Szlavik, Z., 2004. Advances in XML Information Retrieval: INEX 2004. Dagstuhl Castle, Germany, December 6-8.
  15. Ogilvie, P., Callan, J., 2003. Using language models for flat text queries in XML retrieval. In Proceedings of INEX 2003 Workshop, Dagstuhl, Germany, p.12-18.
  16. Piwowarski, B., Faure, G.E., Gallinari, P., 2002. Bayesian Networks and INEX. In INEX 2002 Workshop Proceedings, p.149-153, Germany.
  17. Polyzotis, N., Garofalakis, M. N., 2006. XCluster Synopses for Structured XML Content. ICDE.
  18. Sauvagnat, K., Boughanem, M., Chrisment, C., 2006. Answering content-and-structure-based queries on XML documents using relevance propagation. Information Systems, Special Issue SPIRE 2004, vol. 31, p.621-635, Elsevier.
  19. Sigurbjornsson, B., Kamps, J., de Rijke, M., 2003. An element-based approach to XML retrieval. INEX 2003 workshop, Dagstuhl, Germany.
  20. Kohonen, T., 1990. Self-organizing map. Proceedings of the IEEE, Vol. 78, n°9.
  21. Trotman, A., 2005. Choosing document structure weights. Information Processing and Management, vol. 41, n°2, p.243-264.
Download


Paper Citation


in Harvard Style

Bessai-Mechmache F. (2013). Toward a Neural Aggregated Search Model for Semi-structured Documents . In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval and the International Conference on Knowledge Management and Information Sharing - Volume 1: KDIR, (IC3K 2013) ISBN 978-989-8565-75-4, pages 91-95. DOI: 10.5220/0004538400910095


in Bibtex Style

@conference{kdir13,
author={F. Z. Bessai-Mechmache},
title={Toward a Neural Aggregated Search Model for Semi-structured Documents},
booktitle={Proceedings of the International Conference on Knowledge Discovery and Information Retrieval and the International Conference on Knowledge Management and Information Sharing - Volume 1: KDIR, (IC3K 2013)},
year={2013},
pages={91-95},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004538400910095},
isbn={978-989-8565-75-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Knowledge Discovery and Information Retrieval and the International Conference on Knowledge Management and Information Sharing - Volume 1: KDIR, (IC3K 2013)
TI - Toward a Neural Aggregated Search Model for Semi-structured Documents
SN - 978-989-8565-75-4
AU - Bessai-Mechmache F.
PY - 2013
SP - 91
EP - 95
DO - 10.5220/0004538400910095