Proposal of a P300-based BCI Speller using a Predictive Text System

Ricardo Ron Angevin, Leandro da Silva-Sauer

2013

Abstract

This paper presents a P300-based BCI speller system that uses a virtual 4 x 3 keyboard based on the T9 interface developed on mobile phones in order to increase the writing speed. To validate the effectiveness of the proposed BCI, we compared it with two adaptations of the classical Farwell and Donchin speller, which is based on a 6 x 6 symbol matrix. Three healthy subjects took part in the experiment. The preliminary results confirm the effectiveness of T9-based speller, since the time needed to spell words and complete sentences was considerably reduced.

References

  1. Bianchi, L., Sami, S., Hillebrand, A., Fawcett, I., Quitadamo, L., and Seri, S. (2010). Which physiological components are more suitable for visual ERP based brain-computer interface? A preliminary MEG/EEG study. Brain Topography, 23(2):180-185.
  2. Birbaumer, N. (2006). Breaking the silence: Braincomputer interfaces (BCI) for communication and motor control. Psychophysiology, 43(6):517-532.
  3. Donchin, E., Spencer, K., and Wijesinghe, R. (2000). The mental prosthesis: Assessing the speed of a P300- based brain-computer interface. IEEE Transactions on Rehabilitation Engineering, 8(2):174-179.
  4. Dunlop, M. D. and Crossan, A. (2000). Predictive text entry methods for mobile phones. Personal Technologies, 4(2-3):134-143.
  5. Farwell, L. and Donchin, E. (1988). Talking off the top of your head: toward a mental prosthesis utilizing eventrelated brain potentials. Electroencephalography and Clinical Neurophysiology, 70(6):510 - 523.
  6. Grover, D. L., King, M. T., and Kushler, C. A. (1998). Reduced keyboard disambiguating computer. U.S. Patent No. 5,818,437. Washington, DC: U.S. Patent and Trademark Office.
  7. Kececi, H., Degirmenci, Y., and Atakay, S. (2006). Habituation and dishabituation of P300. Cognitive and Behavioral Neurology, 19(3):130-134.
  8. Kleih, S., Nijboer, F., Halder, S., and Kü bler, A. (2010). Motivation modulates the P300 amplitude during brain-computer interface use. Clinical Neurophysiology, 121(7):1023 - 1031.
  9. Krusienski, D., Sellers, E., McFarland, D., Vaughan, T., and Wolpaw, J. (2008). Toward enhanced P300 speller performance. Journal of Neuroscience Methods, 167(1):15 - 21.
  10. Lu, J., Speier, W., Hu, X., and Pouratian, N. (2013). The effects of stimulus timing features on P300 speller performance. Clinical Neurophysiology, 124(2):306 - 314.
  11. Mak, J. and Wolpaw, J. (2009). Clinical applications of brain-computer interfaces: Current state and future prospects. IEEE Reviews in Biomedical Engineering, 2:187-199.
  12. Mangun, G. R. and Buck, L. A. (1998). Sustained visualspatial attention produces costs and benefits in response time and evoked neural activity. Neuropsychologia, 36(3):189 - 200.
  13. McFarland, D. J., Sarnacki, W. A., Townsend, G., Vaughan, T., and Wolpaw, J. R. (2011). The P300-based braincomputer interface (BCI): Effects of stimulus rate. Clinical Neurophysiology, 122(4):731 - 737.
  14. Murata, A. and Uetake, A. (2001). Evaluation of mental fatigue in human-computer interaction - Analysis using feature parameters extracted from event-related potential. In 10th IEEE International Workshop on Robot and Human Interactive Communication, pages 630- 635.
  15. Polich, J. and Kok, A. (1995). Cognitive and biological determinants of P300: An integrative review. Biological Psychology, 41(2):103 - 146.
  16. Schalk, G., McFarland, D., Hinterberger, T., Birbaumer, N., and Wolpaw, J. (2004). Bci2000: A general-purpose brain-computer interface (BCI) system. IEEE Transactions on Biomedical Engineering, 51(6):1034- 1043.
  17. Sellers, E. W. and Donchin, E. (2006). A P300-based brain-computer interface: Initial tests by ALS patients. Clinical Neurophysiology, 117(3):538 - 548.
  18. Sellers, E. W., Krusienski, D. J., McFarland, D. J., Vaughan, T. M., and Wolpaw, J. R. (2006). A P300 event-related potential brain-computer interface (BCI): The effects of matrix size and inter stimulus interval on performance. Biological Psychology, 73(3):242 - 252.
  19. Shih, J. J., Townsend, G., Krusienski, D. J., Shih, K. D., Shih, R. M., Heggeli, K., Paris, T., and Meschia, J. F. (2013). Comparison of checkerboard P300 speller vs. row-column speller in normal elderly and aphasic stroke population. Paper presented at the Fifth International BrainComputer Interface Meeting, Asilomar Conference Grounds, Pacific Grove, CA. Retrieved from http://castor.tugraz.at/doku/BCIMeeting2013/020.pdf.
  20. Wang, C., Guan, C., and Zhang, H. (2005). P300 braincomputer interface design for communication and control applications. In 27th Annual International Conference of the Engineering in Medicine and Biology Society IEEE-EMBS 2005, pages 5400-5403.
  21. Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., and Vaughan, T. M. (2002). Braincomputer interfaces for communication and control. Clinical Neurophysiology, 113(6):767-791.
Download


Paper Citation


in Harvard Style

Ron Angevin R. and da Silva-Sauer L. (2013). Proposal of a P300-based BCI Speller using a Predictive Text System . In Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NEUROTECHNIX, ISBN 978-989-8565-80-8, pages 35-40. DOI: 10.5220/0004612300350040


in Bibtex Style

@conference{neurotechnix13,
author={Ricardo Ron Angevin and Leandro da Silva-Sauer},
title={Proposal of a P300-based BCI Speller using a Predictive Text System},
booktitle={Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NEUROTECHNIX,},
year={2013},
pages={35-40},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004612300350040},
isbn={978-989-8565-80-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NEUROTECHNIX,
TI - Proposal of a P300-based BCI Speller using a Predictive Text System
SN - 978-989-8565-80-8
AU - Ron Angevin R.
AU - da Silva-Sauer L.
PY - 2013
SP - 35
EP - 40
DO - 10.5220/0004612300350040