Artificial Curiosity Emerging Human-like Behaviour - A Fundation for Fully Autonomous Cognitive Machines

Dominik Maximilián Ramík, Kurosh Madani, Christophe Sabourin

2013

Abstract

This paper is devoted to autonomous cognitive machines by mean of the design of an artificial curiosity based cognitive system for autonomous high-level knowledge acquisition from visual information. Playing a chief role as well in visual attention as in interactive high-level knowledge construction, the artificial curiosity (e.g. perceptual and epistemic curiosities) is realized through combining visual saliency detection and Machine-Learning based approaches. Experimental results validating the deployment of the investigated system have been obtained using a humanoid robot acquiring visually knowledge about its surrounding environment interacting with a human tutor. As show the reported results and experiments, the proposed cognitive system allows the machine to discover autonomously the surrounding world in which it may evolve, to learn new knowledge about it and to describe it using human-like natural utterances.

References

  1. Achanta, Estrada, F., Wils, P., Susstrunk, S., 2008. Salient Region Detection and Segmentation, Proc. of International Conference on Computer Vision Systems (ICVS 7808), vol. 5008, LNCS, Springer Berlin / Heidelberg, 66_75.
  2. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S., 2009 Frequency-tuned Salient Region Detection, Proc. of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR).
  3. Araki, T., Nakamura, T., Nagai, T., Funakoshi, K., Nakano, M. and Iwahashi, N., 2011 'Autonomous acquisition of multimodal information for online object concept formation by robots', IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, 1540-1547.
  4. Berlyne, D. E., 1954, 'A theory of human curiosity', British Journal of Psychology, vol. 45, no. 3, August, pp. 180-191.
  5. Bowerman, M. , 1983, 'How Do Children Avoid Constructing an Overly General Grammar in the Absence of Feedback about What is Not a Sentence?78, Papers and Reports on Child Language Development.
  6. Brand, R. J., Baldwin, D. A. and Ashburn, L. A., 2002 'Evidence for 'motionese': modifications in mothers infant-directed action', Developmental Science, 72-83.
  7. Coradeschi, S. and Saffiotti, A., 2003, 'An introduction to the anchoring problem', Robotics and Autonomous Systems, vol. 43, pp. 85-96.
  8. Goodrich, M. A. and Schultz, A. C., 2007, 'Human-robot interaction: a survey', Foundations and trends in human computer interaction, vol. 1, jan, pp. 203-275.
  9. Greeff, J. D., Delaunay, F. and Belpaeme, T., 2009, 'Human-Robot Interaction in Concept Acquisition: a computational model', Proceedings of the 2009 IEEE 8th International Conference on Development and Learning, Washington, 1-6.
  10. Harel, J., Koch, C., Perona, P., 2007, Graph-based visual saliency, Advances in Neural Information Processing Systems 19, 545_552.
  11. Itti, L., Koch, C. , Niebur, E., 1998, A Model of SaliencyBased Visual Attention for Rapid Scene Analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, 20, 1254_1259.
  12. Kang, M. J. J., Hsu, M., Krajbich, I. M., Loewenstein, G., McClure, S. M., Wang, J. T. T. and Camerer, C. F., 2009, 'The wick in the candle of learning: epistemic curiosity activates reward circuitry and enhances memory', Psychological science, vol. 20, no. 8, August, pp. 963-973, Available: 1467-9280.
  13. Kuhn, D., Garcia-Mila, M., Zohar, A. and Andersen, C., 1995, 'Strategies of knowledge acquisition', Society for Research in Child Development Monographs, vol. 60 (4), no. 245.
  14. Liang, Z., Chi, Z., Fu, H., Feng, D., 2012, Salient object detection using content-sensitive hypergraph representation and partitioning, Pattern Recogn. 45 (11), 3886_3901.
  15. Litman, J. A., 2008, 'Interest and deprivation factors of epistemic curiosity', Personality and Individual Differences, vol. 44, no. 7, pp. 1585-1595.
  16. Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N. , Tang X., Shum, H.-Y., 2011, Learning to Detect a Salient Object, IEEE Trans. Pattern Anal. Mach. Intell. 33 (2), 353_367.
  17. Madani, K. and Sabourin, C., 2011, 'Multi-level cognitive machine-learning based concept for human-like "artificial" walking: Application to autonomous stroll of humanoid robots. Neurocomputing, Vol. 74, 1213- 1228.
  18. Madani, K., Ramik, D. M. and Sabourin, C., 2012, Multilevel cognitive machine-learning based concept for Artificial Awareness: application to humanoid robot's awareness using visual saliency”, J. of Applied Computational Intelligence and Soft Computing,. DOI: 10.1155/2012/354785.
  19. Ogino, M., Kikuchi, M. and Asada, M., 2006, 'How can humanoid acquire lexicon? active approach by attention and learning biases based on curiosity', IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, 3480-3485.
  20. Ramík, D. M., Sabourin, C. and Madani K., 2011-a, 'A Real-time Robot Vision Approach Combining Visual Saliency and Unsupervised Learning', Proc. of 14th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, Paris, 241-248.
  21. Ramík, D. M., Sabourin, C. and Madani, K., 2011-b, 'Hybrid Salient Object Extraction Approach with Automatic Estimation of Visual Attention Scale', Proc. of 7th International Conference on Signal Image Technology & Internet-Based Systems, Dijon, 438- 445.
  22. Saunders, J., Nehaniv, C. L. and Lyon, C., 2010, 'Robot learning of lexical semantics from sensorimotor interaction and the unrestricted speech of human tutors', Second International Symposium on New Frontiers in Human-Robot Interaction, Leicester, 95- 102.
  23. Schindler, M. and von Goethe, J. W., 1964, Goethe's theory of colour applied by Maria Schindler. New Knowledge Books, East Grinstead, Eng.
  24. Skocaj, D., Kristan, M., Vrecko, A., Mahnic, M., Janicek, M., Kruijff, G.-J.M., Hanheide, M., Hawes, N., Keller, T., Zillich, M. and Zhou, K., 2011, 'A system for interactive learning in dialogue with a tutor', IEEE/RSJ International Conference on Intelligent Robots and Systems IROS 2011, San Francisco, 3387- 3394.
  25. Waxman, S. R. and Gelman, S. A., 2009, 'Early wordlearning entails reference, not merely associations', Trends in cognitive science, vol. 13, jun, pp. 258-263.
  26. Wolfe, J. M. and Horowitz, T. S., 2004, 'What attributes guide the deployment of visual attention and how do they do it?78, Nature Reviews Neuroscience, 495-501.
  27. Yu, C., 2005, 'The emergence of links between lexical acquisition and object categorization: a computational study', Connection Science, vol. 17, pp. 381-397.
Download


Paper Citation


in Harvard Style

Maximilián Ramík D., Madani K. and Sabourin C. (2013). Artificial Curiosity Emerging Human-like Behaviour - A Fundation for Fully Autonomous Cognitive Machines . In Proceedings of the 5th International Joint Conference on Computational Intelligence - Volume 1: NCTA, (IJCCI 2013) ISBN 978-989-8565-77-8, pages 407-419. DOI: 10.5220/0004628604070419


in Bibtex Style

@conference{ncta13,
author={Dominik Maximilián Ramík and Kurosh Madani and Christophe Sabourin},
title={Artificial Curiosity Emerging Human-like Behaviour - A Fundation for Fully Autonomous Cognitive Machines},
booktitle={Proceedings of the 5th International Joint Conference on Computational Intelligence - Volume 1: NCTA, (IJCCI 2013)},
year={2013},
pages={407-419},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004628604070419},
isbn={978-989-8565-77-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Joint Conference on Computational Intelligence - Volume 1: NCTA, (IJCCI 2013)
TI - Artificial Curiosity Emerging Human-like Behaviour - A Fundation for Fully Autonomous Cognitive Machines
SN - 978-989-8565-77-8
AU - Maximilián Ramík D.
AU - Madani K.
AU - Sabourin C.
PY - 2013
SP - 407
EP - 419
DO - 10.5220/0004628604070419