Human-like Sensor Fusion Mechanisms in a Postural Control Robot

Georg Hettich, Vittorio Lippi, Thomas Mergner

2013

Abstract

In humans, maintaining body posture is a basis for many activities such as standing, walking or reaching. Human posture control involves multi-sensory integration mainly of joint angle, joint torque, vestibular and visual inputs. This integration provides humans with high flexibility and with robustness in terms of fail-safety. Roboticists may draw inspirations from the human control methods when building devices that interact with humans, such as prostheses or exoskeletons. This study presents a multisensory control method derived from human experiments, which is re-embodied in a biped postural control robot. The robot uses ankle and hip joints for balancing in the sagittal plane during external disturbances such as support surface motion. For the balancing, the robot estimates the external disturbances that have impact on its body by fusing the sensory signals. It then uses these estimates in negative feedback to command the local joint controls to compensate for the disturbances. This study describes the human sensor fusion mechanisms and their implementation into the robot, and it compares robot and human responses to support surface tilt. Measured balancing responses of the robot resemble in the main characteristics those of the human subjects, suggesting that the described sensor fusion mechanisms capture important aspects of human balancing.

References

  1. AlBakri, M. (2008). Development of a mathematical model and simulation environment for the postural robot (PostuRob II). Retrieved June 12, 2013, from http://www.posturob.uniklinik-freiburg.de.
  2. Alexandrov, A. V., Frolov, A. A., Horak, F. B., CarlsonKuhta, P. and Park, S. (2005). Feedback equilibrium control during human standing. Biol Cybern, 93, 309- 322.
  3. Bosco, G. and Poppele, R. E. (1997). Representation of multiple kinematic parameters of the cat hindlimb in spinocerebellar activity. J Neurophysiol, 78, 1421- 1432.
  4. Bronstein, A. M. (1988). Evidence for a vestibular input contributing to dynamic head stabilization in man. Acta Otolaryngol, 105, 1-6.
  5. Gandevia, S. C., Refshauge, K. M. and Collins, D. F. (2002) Proprioception: peripheral inputs and perceptual interactions. Adv Exp Med Biol, 508, 61-8.
  6. Hettich, G., Fennell, L. and Mergner, T. (2011). Double inverted pendulum model of reactive human stance control. Multibody Dynamics Conference 2011 (available http://www.posturob.uniklinik-freiburg.de).
  7. Horak, F. B. and Nashner, L. M. (1986). Central programming of postural movements: adaptation to altered support-surface configurations, J Neurophysiol, 55, 1369-1381.
  8. Horak, F. B. and Macpherson, J. M. (1996). Postural Orientation and Equilibrium. Rowell, L., & Shepherd, J., Handbook of physiology. Vol. 1. New York: Oxford University Press.
  9. Klein, T. J., Jeka, J., Kiemel, T. and Lewis, M. A. (2011). Navigating sensory conflict in dynamic environments using adaptive state estimation. Biol Cybern, 105, 291- 304.
  10. Kuo, A. D. (2005). An optimal state estimation model of sensory integration in human postural balance. J Neural Eng, 2, 235-249.
  11. Lackner, J. R. and DiZio, P. (1994). Rapid adaptation to Coriolis force perturbations of arm trajectories. J Neurophysiol, 72, 299-313.
  12. Mahboobin, A., Loughlin, P. J., Redfern, M. S., Anderson, S. O., Atkeson, C. G. and Hodgkins, J. K. (2008) Sensory adaptation in balance control: lessons for biomimetic robotic bipeds. Neural Netw, 21(4), 621- 627.
  13. Maurer, C., Mergner, T. and Peterka, R. J. (2006). Multisensory control of human upright stance, Exp Brain Res, 171, 231-250.
  14. Mergner, T., Nardi, G. L., Becker, W. and Deecke, L. (1983). The role of canal-neck interaction for the perception of horizontal trunk and head rotation. Exp Brain Res, 49, 198-208.
  15. Mergner, T., Siebold, C., Schweigart, G. and Becker, W. (1991). Human perception of horizontal trunk and head rotation in space during vestibular and neck stimulation. Exp Brain Res, 85, 389-404.
  16. Mergner, T., Huber, W. and Becker, W. (1997). Vestibular-neck interaction and transformations of sensory coordinates. J Vestibul Res-Equil, 7, 119-135.
  17. Mergner, T. (2002). The Matryoshka Dolls principle in human dynamic behavior in space-A theory of linked references for multisensory perception and control of action. Curr Psychol Cogn, 21, 129-212.
  18. Mergner, T., Maurer, C. and Peterka R. J. (2003). A multisensory posture control model of human upright stance, Prog Brain Res, 142, 189-201.
  19. Mergner, T., Schweigart, G. and Fennell, L. (2009). Vestibular humanoid postural control. J Physiol (Paris), 103, 178-194.
  20. Mergner, T. (2010). A neurological view on reactive human stance control. Annu Rev Control, 34, 177-198, 2010.
  21. Nashner, L. M. and Berthoz, A. (1978). Visual contribution to rapid responses during postural control. Exp Brain Res, 150, 403-407.
  22. Nashner, L. and McCollum, G. (1985). The organization of human postural movements: a formal basis and experimental synthesis. Behav Brain Sci, 8, 135-172.
  23. Otnes, R. K. and Enochson, L. D. (1972) Digital Time Series Analysis. New York: Wiley.
  24. Peterka, R. J. (2002). Sensorimotor integration in human postural control. J Neurophysiol, 88, 1097-1118.
  25. Poppele, R. E., Bosco, G. and Rankin, A. M. (2002). Independent representations of limb axis length and orientation in spinocerebellar response components. J Neurophysiol, 87, 409-422.
  26. Pozzo, T., Berthoz, A., Lefort, L. and Vitte, E. (1991). Head stabilization during various locomotor tasks in humans. II. Patients with bilateral peripheral vestibular deficits. Exp Brain Res, 85, 208- 217.
  27. Tahboub, K. A. and Mergner, T. (2007) Biological and engineering approaches to human postural control. Integ. Comput Aid Eng, 13, 1-17.
  28. van der Kooij, H., Jacobs, R., Koopman, B. and Grootenboer, H. (1999). A multisensory integration model of human stance control. Biol Cybern, 80, 299- 308.
  29. van der Kooij, H. and Peterka R.J. (2011) Non-linear stimulus-response behavior of the human stance control system is predicted by optimization of a system with sensory and motor noise. J Comput Neurosci, 30(3), 759-778.
  30. Wehner, R. (1987). Matched Filters - Neural models of the external world, J Comp Physiol A, 161, 511-531.
  31. Winter, D. A. (1990). Biomechanics and motor control of human movement (2nd ed.). New York: Wiley.
Download


Paper Citation


in Harvard Style

Hettich G., Lippi V. and Mergner T. (2013). Human-like Sensor Fusion Mechanisms in a Postural Control Robot . In Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: SensoryFusion, (NEUROTECHNIX 2013) ISBN 978-989-8565-80-8, pages 152-160. DOI: 10.5220/0004642701520160


in Bibtex Style

@conference{sensoryfusion13,
author={Georg Hettich and Vittorio Lippi and Thomas Mergner},
title={Human-like Sensor Fusion Mechanisms in a Postural Control Robot},
booktitle={Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: SensoryFusion, (NEUROTECHNIX 2013)},
year={2013},
pages={152-160},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004642701520160},
isbn={978-989-8565-80-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: SensoryFusion, (NEUROTECHNIX 2013)
TI - Human-like Sensor Fusion Mechanisms in a Postural Control Robot
SN - 978-989-8565-80-8
AU - Hettich G.
AU - Lippi V.
AU - Mergner T.
PY - 2013
SP - 152
EP - 160
DO - 10.5220/0004642701520160