Assessment of the Suitability of the Motorized Ankle-Foot Orthosis as a Diagnostic and Rehabilitation Tool for Gait

Guillermo Asín, Filipe A. Barroso, Juan C. Moreno, José L. Pons

2013

Abstract

A unilateral powered exoskeleton (Motorized ankle-foot orthosis, MAFO) is presented in this work, with the aim of studying muscle and kinematics short-term adaptations of the ankle during rehabilitation tasks. For this purpose, we conducted this study during gait over a treadmill, measuring surface electromyography activation and biomechanical data, in different conditions of assistance. This pilot study also aims to demonstrate that the tool is suitable for measuring biomechanical data while allowing EMG measurements, proving it as a useful tool during gait assessment and rehabilitation. Gastrocnemius Medialis activation presents slightly higher amplitude with higher assistances, so the subjects performed a higher range of motion gait pattern. Tibialis Anterior EMG activation presents consistent data with previous studies. Ankle angle at lower assistances makes the robot force less the subject to reach the imposed gait pattern, and so the range of motion diminishes. Regarding ankle angular velocity, at higher assistances, higher velocities are reached. The torque between the subjects foot and the robot. For lower assistances, the imposed reference pattern is less restrictive, and so the force the user exerts against the robot is lower.

References

  1. Asín, G., Collantes, I., Moreno, J. C., and L, P. J. (2012). Disen˜o de una órtesis motorizada de tobillo para rehabilitación de ictus con un enfoque top-down. In Summer School on Neurorehabilitation, 2012.
  2. Belda-Lois, J.-M., Mena-del Horno, S., Bermejo-Bosch, I., Moreno, J. C., Pons, J. L., Farina, D., Iosa, M., Molinari, M., Tamburella, F., Ramos, A., et al. (2011). Rehabilitation of gait after stroke: a review towards a top-down approach. Journal of neuroengineering and rehabilitation, 8(1):66.
  3. Blaya, J. A. and Herr, H. (2004). Adaptive control of a variable-impedance ankle-foot orthosis to assist dropfoot gait. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 12(1):24-31.
  4. Costa, N. R. and Caldwell, D. G. (2006). Control of a biomimetic soft-actuated lower body 10dof exoskeleton. Proceedings of the 8th International IFAC Symposiumon Robot Control SYROCO, pages 6-8.
  5. Ferris, D. P., Czerniecki, J. M., Hannaford, B., et al. (2005). An ankle-foot orthosis powered by artificial pneumatic muscles. Journal of Applied Biomechanics, 21(2):189.
  6. Ferris, D. P., Gordon, K. E., Sawicki, G. S., and Peethambaran, A. (2006). An improved powered ankle-foot orthosis using proportional myoelectric control. Gait & posture, 23(4):425-428.
  7. Galle, S., Malcolm, P., Derave, W., and De Clercq, D. (2013). Adaptation to walking with an exoskeleton that assists ankle extension. Gait & Posture.
  8. Gordon, K. E. and Ferris, D. P. (2007). Learning to walk with a robotic ankle exoskeleton. Journal of biomechanics, 40(12):2636-2644.
  9. Hermens, H. J., Freriks, B., Merletti, R., Stegeman, D., Blok, J., Rau, G., Disselhorst-Klug, C., and Hägg, G. (1999). European recommendations for surface electromyography. Roessingh Research and Development The Netherlands.
  10. Hidler, J. M. and Wall, A. E. (2005). Alterations in muscle activation patterns during robotic-assisted walking. Clinical biomechanics (Bristol, Avon), 20(2):184- 193.
  11. Hitt, J., Sugar, T., Holgate, M., Bellman, R., and Hollander, K. (2009). Robotic transtibial prosthesis with biomechanical energy regeneration. Industrial Robot: An International Journal, 36(5):441-447.
  12. Iosa, M., Tamburella, F., Moreno, J. C., Collantes, I., Asín, G., Aloise, F., Pisotta, I., Muzzioli, L., Mattia, D., Molinari, M., Pons, J. L., and Cincotti, F. (2012). Neurorehabilitation after stroke: a new tool for a top-down approach. In Terzo Congresso Gruppo Nazionale Bioingegneria (GNB 2012).
  13. Kao, P.-C. and Ferris, D. P. (2009). Motor adaptation during dorsiflexion-assisted walking with a powered orthosis. Gait & posture, 29(2):230-236.
  14. Kao, P.-C., Lewis, C. L., and Ferris, D. P. (2010a). Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. Journal of biomechanics, 43(2):203-209.
  15. Kao, P.-C., Lewis, C. L., and Ferris, D. P. (2010b). Shortterm locomotor adaptation to a robotic ankle exoskeleton does not alter soleus hoffmann reflex amplitude. Journal of neuroengineering and rehabilitation, 7(1):33.
  16. Krebs, H. I. and Hogan, N. (2006). Therapeutic robotics: A technology push. Proceedings of the IEEE, 94(9):1727-1738.
  17. Kwa, H. K., Noorden, J. H., Missel, M., Craig, T., Pratt, J. E., and Neuhaus, P. D. (2009). Development of the ihmc mobility assist exoskeleton. In Robotics and Automation, 2009. ICRA'09. IEEE International Conference on, pages 2556-2562. IEEE.
  18. Moreno, J. C., Brunetti, F., Rocon, E., and Pons, J. L. (2008). Immediate effects of a controllable knee ankle foot orthosis for functional compensation of gait in patients with proximal leg weakness. Medical & biological engineering & computing, 46(1):43-53.
  19. Perry, J. (1992). Phases of gait. In Gait Analysis: Normal and Pathological Function, pages 9-16. Slack, Thorofare, NJ.
  20. Saito, Y., Kikuchi, K., Negoto, H., Oshima, T., and Haneyoshi, T. (2005). Development of externally powered lower limb orthosis with bilateral-servo actuator. In Rehabilitation Robotics, 2005. ICORR 2005. 9th International Conference on, pages 394- 399. IEEE.
  21. Sawicki, G. S. and Ferris, D. P. (2008). Mechanics and energetics of level walking with powered ankle exoskeletons. Journal of Experimental Biology, 211(9):1402- 1413.
  22. Sawicki, G. S. and Ferris, D. P. (2009). A pneumatically powered knee-ankle-foot orthosis (kafo) with myoelectric activation and inhibition. Journal of neuroengineering and rehabilitation, 6(1):23.
  23. Stauffer, Y., Allemand, Y., Bouri, M., Fournier, J., Clavel, R., Metrailler, P., Brodard, R., and Reynard, F. (2009). The walktrainer-a new generation of walking reeducation device combining orthoses and muscle stimulation. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 17(1):38-45.
  24. Van der Kooij, H., Veneman, J., and Ekkelenkamp, R. (2006). Compliant actuation of exoskeletons. Mobile robotics-towards new applications, Mammendorf. ISBN, pages 978-3.
  25. Ward, J. A., Hitt, J., Sugar, T., and Bharadwaj, K. (2006). Dynamic pace controller for the robotic gait trainer. ASME.
  26. Wheeler, J. W., Krebs, H. I., and Hogan, N. (2004). An ankle robot for a modular gait rehabilitation system. In Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on, volume 2, pages 1680-1684. IEEE.
Download


Paper Citation


in Harvard Style

Asín G., Barroso F., Moreno J. and Pons J. (2013). Assessment of the Suitability of the Motorized Ankle-Foot Orthosis as a Diagnostic and Rehabilitation Tool for Gait . In Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: SensoryFusion, (NEUROTECHNIX 2013) ISBN 978-989-8565-80-8, pages 161-166. DOI: 10.5220/0004652101610166


in Bibtex Style

@conference{sensoryfusion13,
author={Guillermo Asín and Filipe A. Barroso and Juan C. Moreno and José L. Pons},
title={Assessment of the Suitability of the Motorized Ankle-Foot Orthosis as a Diagnostic and Rehabilitation Tool for Gait},
booktitle={Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: SensoryFusion, (NEUROTECHNIX 2013)},
year={2013},
pages={161-166},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004652101610166},
isbn={978-989-8565-80-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: SensoryFusion, (NEUROTECHNIX 2013)
TI - Assessment of the Suitability of the Motorized Ankle-Foot Orthosis as a Diagnostic and Rehabilitation Tool for Gait
SN - 978-989-8565-80-8
AU - Asín G.
AU - Barroso F.
AU - Moreno J.
AU - Pons J.
PY - 2013
SP - 161
EP - 166
DO - 10.5220/0004652101610166