Multiobjective Memetic Algorithms applied to University Timetabling Problems

Nuno Leite, Fernando Melício, Agostinho Rosa

2013

Abstract

The present Ph.D. Thesis Proposal focus the study and implementation of efficient Multiobjective Memetic Algorithms and its application to University Timetabling Problems. These problems will also be studied and solved in a many-objective framework which impose new problems such as quality of approximated Pareto Front, solution diversity, pertinency of solutions to the decision maker, visualization of chosen solutions, and among others.

References

  1. Abdullah, S., Turabieh, H., McCollum, B., and McMullan, P. (2010). A tabu-based memetic approach for examination timetabling problems. In Yu, J., Greco, S., Lingras, P., Wang, G., and Skowron, A., editors, RSKT, volume 6401 of Lecture Notes in Computer Science, pages 574-581. Springer.
  2. Alba, E., Luque, G., and Nesmachnow, S. (2013). Parallel metaheuristics: recent advances and new trends. International Transactions in Operational Research, 20(1):1-48.
  3. Boyan, J. and Moore, A. W. (2001). Learning evaluation functions to improve optimization by local search. J. Mach. Learn. Res., 1:77-112.
  4. Branke, J., Deb, K., Miettinen, K., and SlowiÁski, R., editors (2008). Multiobjective Optimization: Interactive and Evolutionary Approaches. Lecture Notes in Computer Science. Springer Berlin Heidelberg, Berlin, Heidelberg.
  5. Burke, E., Bykov, Y., and Petrovic, S. (2001). A multicriteria approach to examination timetabling. In Burke, E. and Erben, W., editors, Practice and Theory of Automated Timetabling III, volume 2079 of Lecture Notes in Computer Science, pages 118-131. Springer Berlin / Heidelberg.
  6. Burke, E. K. and Bykov, Y. (2008). A late acceptance strategy in Hill-Climbing for exam timetabling problems. In PATAT 7808 Proceedings of the 7th International Conference on the Practice and Theory of Automated Timetabling.
  7. Burke, E. K., McCollum, B., McMullan, P., and Parkes, A. J. (2008). Multi-objective aspects of the examination timetabling competition track. Proceedings of PATAT 2008.
  8. Cahon, S., Melab, N., and Talbi, E.-G. (2004). ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics. J. Heuristics, 10(3):357- 380.
  9. Caramia, M., Dell'Olmo, P., and Italiano, G. F. (2008). Novel local-search-based approaches to university examination timetabling. INFORMS Journal on Computing, 20(1):86-99.
  10. Carter, M., Laporte, G., and Lee, S. Y. (1996). Examination Timetabling: Algorithmic Strategies and Applications. Journal of the Operational Research Society, 47(3):373-383.
  11. Carter, M. W. (1986). A survey of practical applications of examination timetabling algorithms. Oper. Res., 34(2):193-202.
  12. Cheong, C., Tan, K., and Veeravalli, B. (2009). A Multiobjective Evolutionary Algorithm for Examination Timetabling. Journal of Scheduling, 12:121-146.
  13. Coello, C. A. C., Lamont, G. B., and Veldhuizen, D. A. V. (2006). Evolutionary Algorithms for Solving MultiObjective Problems (Genetic and Evolutionary Computation). Springer-Verlag New York, Inc., Secaucus, NJ, USA.
  14. Coˆté, P., Wong, T., and Sabourin, R. (2004). Application of a Hybrid Multi-Objective Evolutionary Algorithm to the Uncapacitated Exam Proximity Problem. In Proceedings of the 5th International Conference on Practice and Theory of Automated Timetabling (PATAT 2004), pages 151-167.
  15. Deb, K. and Jain, H. (2012). Handling many-objective problems using an improved NSGA-II procedure. In Evolutionary Computation (CEC), 2012 IEEE Congress on, pages 1-8.
  16. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A Fast and Elitist Multiobjective Genetic Algorithm : NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182-197.
  17. Demeester, P., Bilgin, B., Causmaecker, P. D., and Berghe, G. V. (2012). A hyperheuristic approach to examination timetabling problems: benchmarks and a new problem from practice. J. Scheduling, 15(1):83-103.
  18. Ehrgott, M. and Gandibleux, X. (2008). Hybrid Metaheuristics for Multi-objective Combinatorial Optimization. In Blum, C., Aguilera, M., Roli, A., and Sampels, M., editors, Hybrid Metaheuristics, volume 114 of Studies in Computational Intelligence, pages 221-259. Springer Berlin / Heidelberg.
  19. Gendreau, M. and Potvin, J.-Y. (2010). Handbook of Metaheuristics. Springer Publishing Company, Incorporated, 2nd edition.
  20. Glover, F. W. and Kochenberger, G. A. (2003). Handbook of Metaheuristics. Springer.
  21. Gogos, C., Alefragis, P., and Housos, E. (2012). An improved multi-staged algorithmic process for the solution of the examination timetabling problem. Annals OR, 194(1):203-221.
  22. Ishibuchi, H., Tsukamoto, N., and Nojima, Y. (2008). Evolutionary many-objective optimization: A short review. In IEEE Congress on Evolutionary Computation, pages 2419-2426. IEEE.
  23. Jain, H. and Deb, K. (2013). An improved adaptive approach for elitist nondominated sorting genetic algorithm for many-objective optimization. In Purshouse, R. C., Fleming, P. J., Fonseca, C. M., Greco, S., and Shaw, J., editors, EMO, volume 7811 of Lecture Notes in Computer Science, pages 307-321. Springer.
  24. Jaszkiewicz, A., Ishibuchi, H., and Zhang, Q. (2012). Multiobjective memetic algorithms. In Neri, F., Cotta, C., and Moscato, P., editors, Handbook of Memetic Algorithms, volume 379 of Studies in Computational Intelligence, pages 201-217. Springer Berlin Heidelberg.
  25. Leite, N., Melício, F., and Rosa, A. C. (2013a). Solving the Examination Timetabling Problem with the Shuffled Frog-Leaping Algorithm. Accepted on the IJCCIECTA 2013 conference as a position paper.
  26. Leite, N., Neves, R. F., Horta, N., Melício, F., and Rosa, A. C. (2012). Solving an Uncapacitated Exam Timetabling Problem Instance using a Hybrid NSGAII. In Rosa, A. C., Correia, A. D., Madani, K., Filipe, J., and Kacprzyk, J., editors, IJCCI, pages 106-115. SciTePress.
  27. Leite, N., Neves, R. F., Horta, N., Melício, F., and Rosa, A. C. (2013b). Solving a Capacitated Exam Timetabling Problem Instance using a Bi-objective NSGA-II. In Madani, K., Correia, A. D., Rosa, A. C., and Filipe, J., editors, IJCCI (Selected Papers), Studies in Computational Intelligence. Springer (in press).
  28. Lewis, R. (2008). A survey of metaheuristic-based techniques for university timetabling problems. OR Spectrum, 30(1):167-190.
  29. Lü, Z. and Hao, J.-K. (2010). A memetic algorithm for graph coloring. European Journal of Operational Research, 203(1):241 - 250.
  30. McCollum, B., McMullan, P., Parkes, A. J., Burke, E. K., and Qu, R. (2012). A New Model for Automated Examination Timetabling. Annals of Operations Research, 194:291-315.
  31. Morgenstern, C. (1989). Algorithms for General Graph Coloring. PhD thesis, Department of Computer Science, University of New Mexico, Albuquerque, New Mexico.
  32. Moscato, P. and Norman, M. (1992). A “Memetic” Approach for the Traveling Salesman Problem Implementation of a Computational Ecology for Combinatorial Optimization on Message-Passing Systems. In Proceedings of the International Conference on Parallel Computing and Transputer Applications, pages 177-186. IOS Press.
  33. Müller, T. (2009). ITC2007 solver description: a hybrid approach. Annals of Operations Research, 172(1):429- 446.
  34. Mumford, C. (2010). A multiobjective framework for heavily constrained examination timetabling problems. Annals of Operations Research, 180:3-31.
  35. Nebro, A. J. and Durillo, J. J. (2010). A Study of the Parallelization of the Multi-Objective Metaheuristic MOEA/D. In Blum, C. and Battiti, R., editors, LION, volume 6073 of Lecture Notes in Computer Science, pages 303-317. Springer.
  36. Neri, F. and Cotta, C. (2012). A primer on memetic algorithms. In Neri, F., Cotta, C., and Moscato, P., editors, Handbook of Memetic Algorithms, volume 379 of Studies in Computational Intelligence, pages 43- 52. Springer Berlin Heidelberg.
  37. Pais, T. C. and Amaral, P. A. (2009). Weight aggregation in a multiobjective approach for exams timetabling problems. Centro de Matemática e Aplicac¸o˜es. Pre-print CMA 4-2009, available on: http://www.cma.fct.unl.pt/sites/www.cma.fct.unl.pt/ files/documentos/publicacoes/pdf 2009/CMA%204- 2009.pdf.
  38. Paquete, L. F. and Fonseca, C. M. (2001). A study of examination timetabling with multiobjective evolutionary algorithms. Proceedings of the 4th Metaheuristics International Conference (MIC 2001), pages 149-154.
  39. Petrovic, S. and Burke, E. (2004). University timetabling. In Handbook of Scheduling: Algorithms, Models, and Performance Analysis, chapter 45. Chapman Hall/CRC Press.
  40. Petrovic, S. and Bykov, Y. (2003). A multiobjective optimisation technique for exam timetabling based on trajectories. In Burke, E. and Causmaecker, P., editors, Practice and Theory of Automated Timetabling IV, volume 2740 of Lecture Notes in Computer Science, pages 181-194. Springer Berlin Heidelberg.
  41. Qu, R., Burke, E., McCollum, B., Merlot, L. T. G., and Lee, S. Y. (2009). A Survey of Search Methodologies and Automated System Development for Examination Timetabling. Journal of Scheduling, 12:55-89.
  42. Rahimi-Vahed, A. and Mirzaei, A. H. (2007). A hybrid multi-objective shuffled frog-leaping algorithm for a mixed-model assembly line sequencing problem. Computers & Industrial Engineering, 53(4):642 - 666.
  43. Raidl, G. (2006). A Unified View on Hybrid Metaheuristics. In Hybrid Metaheuristics, pages 1-12.
  44. Silva, J. D. L., Burke, E. K., and Petrovic, S. (2004). An introduction to multiobjective metaheuristics for scheduling and timetabling. In Gandibleux, X., Sevaux, M., Sörensen, K., and T'kindt, V., editors, Metaheuristics for Multiobjective Optimisation, volume 535 of Lecture Notes in Economics and Mathematical Systems, pages 91-129. Springer Berlin Heidelberg.
  45. Talbi, E.-G. and Hasle, G. (2013). Metaheuristics on gpus. J. Parallel Distrib. Comput., 73(1):1-3.
  46. Thompson, J. M. and Dowsland, K. A. (1998). A robust simulated annealing based examination timetabling system. Computers & Operations Research, 25(78):637 - 648.
  47. Van Veldhuizen, D. A. and Lamont, G. B. (2000). Multiobjective evolutionary algorithms: Analyzing the stateof-the-art. Evol. Comput., 8(2):125-147.
  48. Wong, T., Coˆté, P., and Sabourin, R. (2004). A Hybrid MOEA for the Capacitated Exam Proximity Problem. In Congress on Evolutionary Computation, volume 2, pages 1495 - 1501.
  49. yan Tan, Y., chang Jiao, Y., Li, H., and kuan Wang, X. (2013). MOEA/D + uniform design: A new version of MOEA/D for optimization problems with many objectives. Computers & Operations Research, 40(6):1648 - 1660.
  50. Zhang, Q. and Li, H. (2007). MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans. Evolutionary Computation, 11(6):712- 731.
  51. Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P. N., and Zhang, Q. (2011). Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation, 1(1):32 - 49.
  52. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and da Fonseca, V. G. (2003). Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evolutionary Computation, 7(2):117- 132.
Download


Paper Citation


in Harvard Style

Leite N., Melício F. and Rosa A. (2013). Multiobjective Memetic Algorithms applied to University Timetabling Problems . In Doctoral Consortium - Doctoral Consortium, (IJCCI 2013) ISBN Not Available, pages 29-37


in Bibtex Style

@conference{doctoral consortium13,
author={Nuno Leite and Fernando Melício and Agostinho Rosa},
title={Multiobjective Memetic Algorithms applied to University Timetabling Problems},
booktitle={Doctoral Consortium - Doctoral Consortium, (IJCCI 2013)},
year={2013},
pages={29-37},
publisher={SciTePress},
organization={INSTICC},
doi={},
isbn={Not Available},
}


in EndNote Style

TY - CONF
JO - Doctoral Consortium - Doctoral Consortium, (IJCCI 2013)
TI - Multiobjective Memetic Algorithms applied to University Timetabling Problems
SN - Not Available
AU - Leite N.
AU - Melício F.
AU - Rosa A.
PY - 2013
SP - 29
EP - 37
DO -