Text Analysis with Ontology Reasoning
Anna Rozeva
2013
Abstract
The analysis of unstructured text when performed by text mining machine learning algorithm results in mining model holding rules for relationships and dependencies among terms extracted by text pre-processing techniques. The obtained mining model represents knowledge derived from the analyzed text which is hard to interpret as it lacks context. Enhancement of its semantic value can be obtained by implementing logic based approach providing formally defined meaning and interpretation mechanism. The generally accepted form for representation of knowledge for existing domain is by domain-specific ontology. The aim of the paper consists in designing a framework for performing ontology instantiation and population with the structures of a complex mining model involving classification and association rules. Procedures have been designed for annotating them with domain concepts and semantic types. The framework provides for turning the mining model into a context model. Ontology reasoning is implemented to validate the input mining model by rule semantic disambiguation and dependency conceptualization. The framework implementation provides for outputting validated domain-related knowledge base in explicit and machine-readable form as a resource that can be adapted for decision support.
References
- Albitar, S., Fournier, S., Espinasse, B., 2012. The Impact of conceptualization on text classification. In X. Wang, I. Cruz, A. Delis and G. Huang (Eds.), Web Information Systems Engineering - WISE 2012, Lecture Notes in Computer Science, Vol.7651, pp.326-339, Springer-Verlag Berlin Heidelberg.
- Baader, F., Horrocks, I., Sattler, U., 2007. Description logics. In Handbook of Knowledge Representation. Elsevier.
- Bloehdorn, S., Cimiano, P., Hotho, A., Staab, S, 2005. An ontology-based framework for text mining. In LDV Forum 20(1):87-112.
- Bloehdorn, S., Hotho, A., 2009. Ontologies for machine learning. In S.Staab and R.Studer (Eds.), Handbook on Ontologies, International Handbooks on Information Systems, pp.637-661, Springer-Verlag Berlin Heidelberg.
- Bratus, S., Rumshisky, A., Magar, R., Thompson, P., 2009. Using domain knowledge for ontology-guided entity extraction from noisy, unstructured text data, In Proceedings of the Third Workshop on Analytics for Noisy Unstructured Text Data, pp.101-106, ACM, New York, NY, USA.
- Canadas, J., Palma, J., Tunes, S., 2009. InSCo-Gen: A MDD tool for web rule-based applications, In M. Gaedke, M. Grossniklaus, O. Diaz, (Eds.), ICWE, Lecture Notes in Computer Science, Vol.5648, pp.523-526, Springer.
- Cunningham, H., Maynard, D., Bontcheva, K., 2011. Text processing with GATE (Version6), University of Sheffield Department of Computer Science.
- Damljanovic, D., Amardeilh, F., Bontcheva, K., 2009. CA manager framework: creating customized workflows for ontology population and semantic annotation. In Proceedings of the Fifth International Conference on Knowledge Capture, pp.177-178.
- Deliyska, B., Rozeva, A., Malamov, D., 2012. Ontology building by dictionary database mining, In Proceedings of the 38th International Conference Applications of Mathematics in Engineering and Economics (AMEE'12), AIP Conference proceedings, Vol. 1497(1), pp.387-394
- Elsayed, A., El-Beltagy, S., Rafea, M., Hegazy, O., 2007. Applying data mining for ontology building, In Proceedings of ISSR.
- Garla, V., Brandt, C., 2012. Ontology-guided feature engineering for clinical text classification, Journal of Biomedical Informatics, Vol. 45(5), pp.992-998.
- Golbreich, C., 2004. Combining rule and ontology reasoners for the semantic web, In G. Antoniou, H. Boley,(Eds.), Rules and Markup Languages for the Semantic Web, pp.6-22.
- Horrocks, I., 2008. Ontologies and the semantic web. Communications of the ACM, 51(12): 58-67.
- Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M., 2004. SWRL: A Semantic Web Rule Language Combining OWL and RuleML, W3C Member Submission 21 May 2004, http://www.w3.org/Submission/SWRL/.
- Maedche, A., Staab, S., 2000. Mining ontologies from text, In R. Dieng, O. Corby (Eds.), EKAW 2000, Lecture Notes in Artificial Intelligence, Vol.1937, pp.189-2002.
- Microsoft SQL Server, 2013. SQL Server DevCenter, http://www.msdn.microsoft.com/enus/sqlserver/default.
- Morneau, M., Mineau, G., 2008. Employing a domain specific ontology to perform semantic search. In P. Eklund and O. Haemmerle (Eds.), Conceptual Structures: Knowledge Visualization and Reasoning, Lecture Notes in Computer Science, Vol.5113, pp.242-254, Springer-Verlag Berlin Heidelberg.
- Motik, B., Patel-Schneider, P.F., Parsia, B., 2012. OWL2 Web Ontology Language Document Overview (Second Edition), W3C Recommendation 11 December 2012, http://www.w3.org/TR/owl2-guide/.
- Pan, J., 2007. A flexible ontology reasoning architecture for the semantic web, IEEE Transactions on Knowledge and Data Engineering, Vol.19 (2), pp.246- 260.
- Pellet Reasoner Plug-in for Protégé 4, 2013. Clark & Parsia, http://www.clarkparsia.com/pellet/protege.
- Pothipruk, P., Governatori, G., 2005. A formal ontology reasoning with individual optimization: a realization of the semantic web, In M. Kitsuregawa et al.(Eds.), Web Information Systems Engineering (WISE 2005), Lecture Notes in Computer Science, Vol.3806, pp.119-132, Springer.
- Protégé 4 User Documentation, 2013. http://www.protegewiki.stanford.edu/wiki/Protege4Us erDocs.
- Rozeva, A., 2011a., Approach for mining text databases, In Proceedings of the III International Conference “Egovernance”, Sozopol, Bulgaria, pp.82-87.
- Rozeva, A., 2011b., Mining model for unstructured data, In Proceedings of the sixth International Conference “Computer Science'11”, Ohrid, Macedonia, pp.411- 415.
- Rozeva, A., 2012. Application of ontologies for knowledge generation. Proceedings of the IV International Conference “E-governance”, Sozopol, Bulgaria, pp. 162-170.
- Spasic, I., Ananiadou, S., McNaught, J., Kumar, A., 2005. Text mining and ontologies in biomedicine: Making sense of raw text. Briefings in Bioinformatics, Vol.6 (3), pp.239-251, Henry Steward Publications 1467- 5463.
- Wang, T., Maynard, D., Peters, W., Bontcheva, K., Cunningham, H., 2005. Extracting a domain ontology from linguistic resource based on relatedness measurements. In IEEE/WIC/ACM International conference on Web Intelligence (WI'05), pp.345-351.
- Wang, X.H., Gu, T., Zhang, D.Q., Pung, H.K., 2004. Ontology based context modeling and reasoning using OWL. In Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops, pp.18-22.
- Witte, R., Li, Q., Zhang, Y., Rilling, J., 2007. Ontological text mining of software documents. In Z. Kedad, N. Lammari, E. Metais, F. Meziane, Y. Rezgui (Eds.), NLDB 2007, Lecture Notes in Computer Science, Vol.4592, pp.168-180, Springer-Verlag Berlin Heidelberg.
- Witte, R., Kappler, T., Baker, C., 2007. Ontology design for biomedical text mining. In C. Baker, K. Cheung (Eds.), Semantic Web: Revolutionizing Knowledge Discovery in the Life Sciences, Vol.13, pp.281-313, Springer.
- Yankova, M., Saggion, H., Cunningham, H., 2008. Adopting ontologies for multisource identity resolution, In A. Duke, M. Hepp, K. Bontcheva, M.B. Villain (Eds.), OBI Vol.308 of ACM International Conference Proceeding Series, pp.6-15, ACM.
Paper Citation
in Harvard Style
Rozeva A. (2013). Text Analysis with Ontology Reasoning . In Proceedings of the Third International Symposium on Business Modeling and Software Design - Volume 1: BMSD, ISBN 978-989-8565-56-3, pages 64-73. DOI: 10.5220/0004774100640073
in Bibtex Style
@conference{bmsd13,
author={Anna Rozeva},
title={Text Analysis with Ontology Reasoning},
booktitle={Proceedings of the Third International Symposium on Business Modeling and Software Design - Volume 1: BMSD,},
year={2013},
pages={64-73},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004774100640073},
isbn={978-989-8565-56-3},
}
in EndNote Style
TY - CONF
JO - Proceedings of the Third International Symposium on Business Modeling and Software Design - Volume 1: BMSD,
TI - Text Analysis with Ontology Reasoning
SN - 978-989-8565-56-3
AU - Rozeva A.
PY - 2013
SP - 64
EP - 73
DO - 10.5220/0004774100640073