Contour based Split and Merge Segmentation and Pre-classification of Zooplankton in Very Large Images

Enrico Gutzeit, Christian Scheel, Tim Dolereit, Matthias Rust

2014

Abstract

Zooplankton is an important component in the water ecosystem and food chain. To understand the influence of zooplankton on the ecosystem a data collection is necessary. In research the automatic image based recognition of zooplankton is of growing interest. Several systems have been developed for zooplankton recognition on low resolution images. For large images approaches are seldom. Images of this size easily exceed the main memory of standard computers. Our novel automatic segmentation approach is able to handle these large images. We developed a contour based Split & Merge approach for segmentation and, to reduce the nonzooplankton segments, combine it with a pre-classification of the segments in reference to their shape. The latter includes a detection of quasi round segments and a novel one for thin segments. Experiment results on several huge images show that we are able to handle this huge images satisfactory.

References

  1. Ahmed, F., Le, H., Olivier, J., and Bon, R. (2013). An active contour model with improved shape priors using fourier descriptors. VISAPP 2013 - Proceedings of the International Conference on Computer Vision Theory and Applications, 1:472-476.
  2. Chehdi, K., Boucher, J., and Hillion, A. (1986). Automatic classification of zooplancton by image analysis. In Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP 7886., volume 11, pages 1477 - 1480.
  3. Culverhouse, P., Williams, R., Simpson, B., Gallienne, C., Reguera, B., Cabrini, M., Fonda-Umani, S., Parisini, T., Pellegrino, F., Pazos, Y., Wang, H., Escalera, L., Moroo, A., Hensey, M., Silke, J., Pellegrini, A., Thomas, D., James, D., Longa, M., Kennedy, S., and del Punta, G. (2006). Hab buoy: a new instrument for in situ monitoring and early warning of harmful algal bloom events. African Journal of Marine Science, 28(2):245-250.
  4. Davis, C. S., Gallager, S. M., Bermann, N. S., Haury, L. R., and Strickler, J. R. (1992). The video plankton recorder (vpr): design and initial results. In Arch. Hydrobiol. Beith., volume 36, pages 67-81.
  5. Davis, C. S., Thwaites, F. T., Gallager, S. M., and Hu, Q. (2005). A three-axis fast-tow digital video plankton recorder for rapid surveys of plankton taxa and hydrography. Limnology and Oceanography-Methods, 3:59-74.
  6. Dubelaar, G. and Jonker, R. (2000). Cytobuoy: a step forward towards using flow cytometry in operational oceanography. Sci. Mar., 64(2):255-265.
  7. Fawell, J. (1976). Electronic measuring devices in the sorting of marine zooplankton. In zooplankton fixation and preservation, pages 201 - 206. Ed. by H.F. Steedman, Paris:UNESCO Press.
  8. Gaston, K. J. and O'Neill, M. A. (2004). Automated species identification: why not? Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 359(1444):655-667+.
  9. Gorsky, G. and Grosjean, P. (2003). Qualitative and quantitative assessment of zooplankton samples. GLOBEC INTERNATIONAL NEWSLETTER APRIL, 9.
  10. Herman, A. W. and Dauphinee, T. M. (1980). Continuous and rapid profiling of zooplankton with an electronic counter mounted on a batfish vehicle. Deep Sea Research Part A. Oceanographic Research Papers, 27(1):79 - 96.
  11. Jeffries, H., Berman, M., Poularikas, A., Katsinis, C., Melas, I., Sherman, K., and Bivins, L. (1984). Automated sizing, counting and identification of zooplankton by pattern recognition. Marine Biology, 78:329- 334.
  12. Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes: Active Contour Models. International Journal of Computer Vision, 1(4):321-331.
  13. Katsinis, C. (1979). Digital Image Processing and Identification of Zooplankton. University of Rhode Island.
  14. Kelkar, D. and Gupta, S. (2008). Improved quadtree method for split merge image segmentation. In Emerging Trends in Engineering and Technology, 2008. ICETET 7808. First International Conference on, pages 44 -47.
  15. Luo, T., Kramer, K., Samson, S., Remsen, A., Goldgof, D. B., Hall, L. O., and Hopkins, T., editors (2004). Active learning to recognize multiple types of plankton, volume 6. IEEE.
  16. Olson, R. J. and Sosik, H. M. (2007). A submersible imaging-in-flow instrument to analyze nano- and microplankton: Imaging FlowCytobot. Limnology and Oceanography: Methods, 5:195-203.
  17. Otsu, N. (1979). A threshold selection method from graylevel histograms. IEEE Transactions on Systems, Man and Cybernetics, 9(1):62-66.
  18. Picheral, M., Guidi, L., Stemmann, L., Karl, D., Iddaoud, G., and Gorsky, G. (2010). The underwater vision profiler 5: An advanced instrument for high spatial resolution studies of particle size spectra and zooplankton. Limnology and Oceanography: Methods, 8:462-473.
  19. Samson, S., Hopkins, T., Remsen, A., Langebrake, L., Sutton, T., and Patten, J. (2001). A system for highresolution zooplankton imaging. Oceanic Engineering, IEEE Journal of, 26(4):671 -676.
  20. Seng, L. (2013). Contour-based shape recognition using perceptual turning points. VISAPP 2013 - Proceedings of the International Conference on Computer Vision Theory and Applications, 1:487-491.
  21. Sheldon, R. and Parsons, T. R. (1967). A practical manual on the use of the Coulter counter in marine research. Coulter Electronics Sales.
  22. Sieracki, C. K., Sieracki, M. E., and Yentsch, C. S. (1998). An imaging-in-flow system for automated analysis of marine microplankton. Marine Ecology Progress Series, 168:285-296.
  23. Toth, L. and Culverhouse, P. F. (1999). 3d object recognition from static 2d views using multiple coarse data channels. Image Vision Comput., 17(11):845-858.
  24. Tsechpenakis, G., Guigand, C. M., and Cowen, R. K., editors (2007). Image Analysis Techniques to Accompany a new In Situ Ichthyoplankton Imaging System. IEEE.
  25. Tsechpenakis, G., Guigand, C. M., and Cowen, R. K. (2008). Machine vision-assisted in-situ ichthyoplankton imaging system. Sea Technology, 49(12):15-20.
  26. Website (2013a). http://www.fluidimaging.com.
  27. Website (2013b). http://www.hydroptic.com/uvp.html.
  28. Website (2013c). http://www.zooscan.com.
Download


Paper Citation


in Harvard Style

Gutzeit E., Scheel C., Dolereit T. and Rust M. (2014). Contour based Split and Merge Segmentation and Pre-classification of Zooplankton in Very Large Images . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-003-1, pages 417-424. DOI: 10.5220/0004648604170424


in Bibtex Style

@conference{visapp14,
author={Enrico Gutzeit and Christian Scheel and Tim Dolereit and Matthias Rust},
title={Contour based Split and Merge Segmentation and Pre-classification of Zooplankton in Very Large Images},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={417-424},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004648604170424},
isbn={978-989-758-003-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2014)
TI - Contour based Split and Merge Segmentation and Pre-classification of Zooplankton in Very Large Images
SN - 978-989-758-003-1
AU - Gutzeit E.
AU - Scheel C.
AU - Dolereit T.
AU - Rust M.
PY - 2014
SP - 417
EP - 424
DO - 10.5220/0004648604170424