Driver Drowsiness Estimation from Facial Expression Features - Computer Vision Feature Investigation using a CG Model
Taro Nakamura, Akinobu Maejima, Shigeo Morishima
2014
Abstract
We propose a method for estimating the degree of a driver’s drowsiness on the basis of changes in facial expressions captured by an IR camera. Typically, drowsiness is accompanied by drooping eyelids. Therefore, most related studies have focused on tracking eyelid movement by monitoring facial feature points. However, the drowsiness feature emerges not only in eyelid movements but also in other facial expressions. To more precisely estimate drowsiness, we must select other effective features. In this study, we detected a new drowsiness feature by comparing a video image and CG model that are applied to the existing feature point information. In addition, we propose a more precise degree of drowsiness estimation method using wrinkle changes and calculating local edge intensity on faces, which expresses drowsiness more directly in the initial stage.
References
- Control, Automation and Systems, 10(2):317-327. Atsushi, I., Mutsuki, T., Kozo, M., and Takayoshi, Y.
- (2011). Improvements to Facial Contour Detection by
- Conference on Pattern Recognition, 273-277. Ayumi, T., Md, S. B., and Koji, O. (2009). Estimation of
- Rate Variability. 31st Annual International IEEE
- Engineering in Medicine and Biology Society, 2543-
- J. C., and Tzyy P. J., 2005. EEG-based drowsiness
- component analysis. IEEE Trans. Circuits Syst., 52:
- Symposium, Parma, Italy, 357-362. D'Orazio, T., Leo, M., Guaragnella, C., and Distante, A.
- (2007). A visual approach for driver inattention
- detection, Pattern Recognition, 40(8):2341-2355. Esra, V., Marian, B., Gwen, L., Mujdat, C., Aytul, E., and
- Javier, M. (2010). Discrimination of Moderate and
- Expressions. 20th International Conference on Pattern
- Recognition, 3874-3877. Esra, V., Mujdat, C., Aytul, E., Gwen, L., Marian, B., and
- Javier, M., 2007. Drowsy Driver Detection Through
- Janeiro, Brazil, 4796: 6-18. García, I., Bronte, S., Bergasa, L. M., Almazan, J., and
- Yebes, J. (2012). Vision-based drowsiness detector for
- Symposium, 618-623. Hiroki, K., Nakaho, N., Keiichi, Y., and Yoshihiro, G.
- (1997). Prediction of Automobile Driver Sleepiness
- (1st Report, Rating of Sleepiness Based on Facial
- 96-1780 (Japanese). Hiroshi, U., Masayuki, K., and Masataka, T. (1994).
- Proceedings of the 1994 Vehicle Navigation &
- Information Systems Conference, 15-20. Hong, J. E., Min, K. C., and Seong H. K. (2005).
- Ergonom., 35:307-320. Huang, K. C., Jung, T. P., Chuang, C. H., Ko, L. W., and
- Lin, C. T. (2012). Preventing Lapse in Performance
- System. 34st Annual International Conference of the
- technology, 166-174. Kenji, I., Satori, H., Teiyuu, K., and Masayoshi, K. (2010).
- Society of Automobile Engineers of Japan, 41-
- 45(Japanese). Marco, J. F., José, M. A., and Arturodela, E. (2010). Real-
- Intelligent & Robotic Systems, 59(2):103-125. Minoru, N., Keiko, Y., and Fumio, K. (2008). Estimation
- Conference 2008, 357-360. Mohammad, A. A. and Mohammad, R. (2011). Driver
- and Image Processing Applications, 337-341. Nakaho, N., Hiroki, K., Yoshihiro, G., and Keiichi, Y.
- (1997). Prediction of Automobile Driver Sleepiness
- (2nd Report, Prediction of Sleepiness and
- Mech. Eng., 63(613): 3067-307 4 (Japanese). Pai, Y. T., Weichih H., Kuo T. B. J., and Liang Y. S.
- (2009). A Portable Device for Real Time Drowsiness
- 31st Annual International Conference of the IEEE
- Engineering in Medicine and Biology Society, 3775-
- Face. 5th International Congress on Image and Signal
- Processing, 1171-1175. Rami N. K., Sarath K., Sara L., and Gamini D. (2011).
- 58(1):121-131. Satori, H., Teiyuu, K., Kenji, I., Hiroto, N., and Noriyuki,
- O. (2010). Drowsiness Detection Using Facial
- Expression Features. SAE International, 2010-01-0466. Vidyagouri, B. H. and Umakant, P. K. (2013). Detection
- Information Science, 361:583-594.
Paper Citation
in Harvard Style
Nakamura T., Maejima A. and Morishima S. (2014). Driver Drowsiness Estimation from Facial Expression Features - Computer Vision Feature Investigation using a CG Model . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-004-8, pages 207-214. DOI: 10.5220/0004648902070214
in Bibtex Style
@conference{visapp14,
author={Taro Nakamura and Akinobu Maejima and Shigeo Morishima},
title={Driver Drowsiness Estimation from Facial Expression Features - Computer Vision Feature Investigation using a CG Model},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={207-214},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004648902070214},
isbn={978-989-758-004-8},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014)
TI - Driver Drowsiness Estimation from Facial Expression Features - Computer Vision Feature Investigation using a CG Model
SN - 978-989-758-004-8
AU - Nakamura T.
AU - Maejima A.
AU - Morishima S.
PY - 2014
SP - 207
EP - 214
DO - 10.5220/0004648902070214