Driver Drowsiness Estimation from Facial Expression Features - Computer Vision Feature Investigation using a CG Model

Taro Nakamura, Akinobu Maejima, Shigeo Morishima

2014

Abstract

We propose a method for estimating the degree of a driver’s drowsiness on the basis of changes in facial expressions captured by an IR camera. Typically, drowsiness is accompanied by drooping eyelids. Therefore, most related studies have focused on tracking eyelid movement by monitoring facial feature points. However, the drowsiness feature emerges not only in eyelid movements but also in other facial expressions. To more precisely estimate drowsiness, we must select other effective features. In this study, we detected a new drowsiness feature by comparing a video image and CG model that are applied to the existing feature point information. In addition, we propose a more precise degree of drowsiness estimation method using wrinkle changes and calculating local edge intensity on faces, which expresses drowsiness more directly in the initial stage.

References

  1. Control, Automation and Systems, 10(2):317-327. Atsushi, I., Mutsuki, T., Kozo, M., and Takayoshi, Y.
  2. (2011). Improvements to Facial Contour Detection by
  3. Conference on Pattern Recognition, 273-277. Ayumi, T., Md, S. B., and Koji, O. (2009). Estimation of
  4. Rate Variability. 31st Annual International IEEE
  5. Engineering in Medicine and Biology Society, 2543-
  6. J. C., and Tzyy P. J., 2005. EEG-based drowsiness
  7. component analysis. IEEE Trans. Circuits Syst., 52:
  8. Symposium, Parma, Italy, 357-362. D'Orazio, T., Leo, M., Guaragnella, C., and Distante, A.
  9. (2007). A visual approach for driver inattention
  10. detection, Pattern Recognition, 40(8):2341-2355. Esra, V., Marian, B., Gwen, L., Mujdat, C., Aytul, E., and
  11. Javier, M. (2010). Discrimination of Moderate and
  12. Expressions. 20th International Conference on Pattern
  13. Recognition, 3874-3877. Esra, V., Mujdat, C., Aytul, E., Gwen, L., Marian, B., and
  14. Javier, M., 2007. Drowsy Driver Detection Through
  15. Janeiro, Brazil, 4796: 6-18. García, I., Bronte, S., Bergasa, L. M., Almazan, J., and
  16. Yebes, J. (2012). Vision-based drowsiness detector for
  17. Symposium, 618-623. Hiroki, K., Nakaho, N., Keiichi, Y., and Yoshihiro, G.
  18. (1997). Prediction of Automobile Driver Sleepiness
  19. (1st Report, Rating of Sleepiness Based on Facial
  20. 96-1780 (Japanese). Hiroshi, U., Masayuki, K., and Masataka, T. (1994).
  21. Proceedings of the 1994 Vehicle Navigation &
  22. Information Systems Conference, 15-20. Hong, J. E., Min, K. C., and Seong H. K. (2005).
  23. Ergonom., 35:307-320. Huang, K. C., Jung, T. P., Chuang, C. H., Ko, L. W., and
  24. Lin, C. T. (2012). Preventing Lapse in Performance
  25. System. 34st Annual International Conference of the
  26. technology, 166-174. Kenji, I., Satori, H., Teiyuu, K., and Masayoshi, K. (2010).
  27. Society of Automobile Engineers of Japan, 41-
  28. 45(Japanese). Marco, J. F., José, M. A., and Arturodela, E. (2010). Real-
  29. Intelligent & Robotic Systems, 59(2):103-125. Minoru, N., Keiko, Y., and Fumio, K. (2008). Estimation
  30. Conference 2008, 357-360. Mohammad, A. A. and Mohammad, R. (2011). Driver
  31. and Image Processing Applications, 337-341. Nakaho, N., Hiroki, K., Yoshihiro, G., and Keiichi, Y.
  32. (1997). Prediction of Automobile Driver Sleepiness
  33. (2nd Report, Prediction of Sleepiness and
  34. Mech. Eng., 63(613): 3067-307 4 (Japanese). Pai, Y. T., Weichih H., Kuo T. B. J., and Liang Y. S.
  35. (2009). A Portable Device for Real Time Drowsiness
  36. 31st Annual International Conference of the IEEE
  37. Engineering in Medicine and Biology Society, 3775-
  38. Face. 5th International Congress on Image and Signal
  39. Processing, 1171-1175. Rami N. K., Sarath K., Sara L., and Gamini D. (2011).
  40. 58(1):121-131. Satori, H., Teiyuu, K., Kenji, I., Hiroto, N., and Noriyuki,
  41. O. (2010). Drowsiness Detection Using Facial
  42. Expression Features. SAE International, 2010-01-0466. Vidyagouri, B. H. and Umakant, P. K. (2013). Detection
  43. Information Science, 361:583-594.
Download


Paper Citation


in Harvard Style

Nakamura T., Maejima A. and Morishima S. (2014). Driver Drowsiness Estimation from Facial Expression Features - Computer Vision Feature Investigation using a CG Model . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-004-8, pages 207-214. DOI: 10.5220/0004648902070214


in Bibtex Style

@conference{visapp14,
author={Taro Nakamura and Akinobu Maejima and Shigeo Morishima},
title={Driver Drowsiness Estimation from Facial Expression Features - Computer Vision Feature Investigation using a CG Model},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={207-214},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004648902070214},
isbn={978-989-758-004-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014)
TI - Driver Drowsiness Estimation from Facial Expression Features - Computer Vision Feature Investigation using a CG Model
SN - 978-989-758-004-8
AU - Nakamura T.
AU - Maejima A.
AU - Morishima S.
PY - 2014
SP - 207
EP - 214
DO - 10.5220/0004648902070214