Action Graph - A Versatile Data Structure for Action Recognition

Jan Baumann, Raoul Wessel, Björn Krüger, Andreas Weber

2014

Abstract

This work presents a novel and generic data-driven method for recognizing human full body actions from live motion data originating from various sources. The method queries an annotated motion capture database for similar motion segments, capable to handle temporal deviations from the original motion. The approach is online-capable, works in realtime, requires virtually no preprocessing and is shown to work with a variety of feature sets extracted from input data including positional data, sparse accelerometer signals, skeletons extracted from depth sensors and even video data. Evaluation is done by comparing against a frame-based Support Vector Machine approach on a freely available motion capture database as well as a database containing Judo referee signal motions and concludes by demonstrating the applicability of the method in a vision-based scenario using video data.

References

  1. Arikan, O., Forsyth, D. A., and O'Brien, J. F. (2003). Motion synthesis from annotations. ACM Trans. Graph., 22:402-408.
  2. Bao, L. and Intille, S. (2004). Activity recognition from user-annotated acceleration data. In Ferscha, A. and Mattern, F., editors, Pervasive Computing, volume 3001 of Lecture Notes in Computer Science, pages 1- 17. Springer Berlin / Heidelberg.
  3. Barbic?, J., Safonova, A., Pan, J.-Y., Faloutsos, C., Hodgins, J. K., and Pollard, N. S. (2004). Segmenting motion capture data into distinct behaviors. In Heidrich, W. and Balakrishnan, R., editors, Proceedings of the Graphics Interface 2004 Conference, pages 185-194. Canadian Human-Computer Communications Society.
  4. Baumann, J., Krüger, B., Zinke, A., and Weber, A. (2011). Data-driven completion of motion capture data. In Workshop on Virtual Reality Interaction and Physical Simulation (VRIPHYS). Eurographics Association.
  5. Bobick, A. F., Davis, J. W., Society, I. C., and Society, I. C. (2001). The recognition of human movement using temporal templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23:257-267.
  6. Campbell, L. W. and Bobick, A. F. (1995). Recognition of human body motion using phase space constraints. In Proceedings of the Fifth International Conference on Computer Vision, ICCV 7895, pages 624-, Washington, DC, USA. IEEE Computer Society.
  7. Carnegie Mellon University Graphics Lab (2004). CMU Motion Capture Database.
  8. Chai, J. and Hodgins, J. K. (2005). Performance animation from low-dimensional control signals. ACM Trans. Graph., 24:686-696.
  9. Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1-27:27.
  10. Choudhury, T., Borriello, G., Consolvo, S., Haehnel, D., Harrison, B., Hemingway, B., Hightower, J., Klasnja, P., Koscher, K., LaMarca, A., Landay, J. A., LeGrand, L., Lester, J., Rahimi, A., Rea, A., and Wyatt, D. (April 2008). The mobile sensing platform: An embedded system for activity recognition. Appears in IEEE Pervasive Magazine - Special Issue on ActivityBased Computing, 7(2):32-41.
  11. Khan, A. M., Lee, Y.-K. L. Y.-K., Lee, S. Y., and Kim, T.-S. K. T.-S. (2010). A triaxial accelerometer-based physical-activity recognition via augmented-signal features and a hierarchical recognizer. IEEE transactions on information technology in biomedicine a publication of the IEEE Engineering in Medicine and Biology Society, 14(5):1166-1172.
  12. Krüger, B., Tautges, J., Weber, A., and Zinke, A. (2010). Fast local and global similarity searches in large motion capture databases. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 7810, pages 1-10, Madrid, Spain. Eurographics Association.
  13. Latré, B., Braem, B., Moerman, I., Blondia, C., and Demeester, P. (2011). A survey on wireless body area networks. Wireless Networks, 17(1):1-18.
  14. Maurer, U., Smailagic, A., Siewiorek, D., and Deisher, M. (2006). Activity recognition and monitoring using multiple sensors on different body positions. In Wearable and Implantable Body Sensor Networks, 2006. BSN 2006. International Workshop on, pages 4 pp. - 116.
  15. Müller, M., Röder, T., Clausen, M., Eberhardt, B., Krüger, B., and Weber, A. (2007). Documentation: Mocap Database HDM05. Computer Graphics Technical Report CG-2007-2, Universität Bonn.
  16. Numaguchi, N., Nakazawa, A., Shiratori, T., and Hodgins, J. K. (2011). A puppet interface for retrieval of motion capture data. In Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
  17. Ofli, F., Chaudhry, R., Kurillo, G., Vidal, R., and Bajcsy, R. (2012). Sequence of the most informative joints (smij): A new representation for human skeletal action recognition. In CVPR Workshops, pages 8-13. IEEE.
  18. Raptis, M., Kirovski, D., and Hoppe, H. (2011). Real-time classification of dance gestures from skeleton animation. In Symposium on Computer Animation, pages 147-156.
  19. Ravi, N., Dandekar, N., Mysore, P., and Littman, M. L. (2005). Activity recognition from accelerometer data. In Proceedings of the 17th conference on Innovative applications of artificial intelligence - Volume 3, IAAI'05, pages 1541-1546. AAAI Press.
  20. Schuldt, C., Laptev, I., and Caputo, B. (2004). Recognizing human actions: A local svm approach. In Proceedings of the Pattern Recognition, 17th International Conference on (ICPR'04) Volume 3 - Volume 03, ICPR 7804, pages 32-36, Washington, DC, USA. IEEE Computer Society.
  21. Tautges, J., Zinke, A., Krüger, B., Baumann, J., Weber, A., Helten, T., Müller, M., Seidel, H.-P., and Eberhardt, B. (2011). Motion reconstruction using sparse accelerometer data. ACM Trans. Graph., 30:18:1-18:12.
  22. Wyatt, D., Philipose, M., and Choudhury, T. (2005). Unsupervised activity recognition using automatically mined common sense. In Proceedings of the 20th national conference on Artificial intelligence - Volume 1, AAAI'05, pages 21-27. AAAI Press.
Download


Paper Citation


in Harvard Style

Baumann J., Wessel R., Krüger B. and Weber A. (2014). Action Graph - A Versatile Data Structure for Action Recognition . In Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2014) ISBN 978-989-758-002-4, pages 325-334. DOI: 10.5220/0004652703250334


in Bibtex Style

@conference{grapp14,
author={Jan Baumann and Raoul Wessel and Björn Krüger and Andreas Weber},
title={Action Graph - A Versatile Data Structure for Action Recognition},
booktitle={Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2014)},
year={2014},
pages={325-334},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004652703250334},
isbn={978-989-758-002-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2014)
TI - Action Graph - A Versatile Data Structure for Action Recognition
SN - 978-989-758-002-4
AU - Baumann J.
AU - Wessel R.
AU - Krüger B.
AU - Weber A.
PY - 2014
SP - 325
EP - 334
DO - 10.5220/0004652703250334