Local Analysis of Confidence Measures for Optical Flow Quality Evaluation
Patricia Márquez-Valle, Debora Gil, Rudolf Mester, Aura Hernàndez-Sabaté
2014
Abstract
Optical Flow (OF) techniques facing the complexity of real sequences have been developed in the last years. Even using the most appropriate technique for our specific problem, at some points the output flow might fail to achieve the minimum error required for the system. Confidence measures computed from either input data or OF output should discard those points where OF is not accurate enough for its further use. It follows that evaluating the capabilities of a confidence measure for bounding OF error is as important as the definition itself. In this paper we analyze different confidence measures and point out their advantages and limitations for their use in real world settings. We also explore the agreement with current tools for their evaluation of confidence measures performance.
References
- Baker, S., Scharstein, D., Lewis, J., and et al. (2011). A database and evaluation methodology for optical flow. IJCV, 92(1):1-31.
- Barron, J. L., Fleet, D. J., and Beauchemin, S. S. (1994). Performance of optical flow techniques. IJCV, 12(1):43-77.
- Bruhn, A. and Weickert, J. (2006). A confidence measure for variational optic flow methods. In Geometric Properties for Incomplete Data, pages 283-298.
- Bruhn, A., Weickert, J., and Schnörr, C. (2005). Lucas/Kanade meets Horn/Schunck: Combining local and global opticflow methods. IJCV, 61(2):221-231.
- Butler, D. J., Wulff, J., Stanley, G. B., and Black, M. J. (2012). A naturalistic open source movie for optical flow evaluation. In ECCV, pages 611-625.
- Cheney, W. and Kincaid, D. (2008). Numerical Mathematics and Computing, Sixth edition. Bob Pirtle, USA.
- Gehrig, S. and Scharwachter, T. (2011). A real-time multicue framework for determining optical flow confidence. In ICCV Workshops, pages 1978-1985. IEEE.
- Horn, B. and Schunck, B. (1981). Determining optical flow. AI, 17:185-203.
- Kondermann, C., Mester, R., and Garbe, C. S. (2008). A statistical confidence measure for optical flows. In ECCV, pages 290-301.
- Kybic, J. and Nieuwenhuis, C. (2011). Bootstrap optical flow confidence and uncertainty measure. Computer Vision and Image Understanding, pages 1449-1462.
- Liu, C. (2009). Beyond pixels: exploring new representations and applications for motionanalysis. PhD thesis, Cambridge, MA, USA.
- Liu, C., Freeman, W., Adelson, E., and Weiss, Y. (2008). Human-assisted motion annotation. In CVPR.
- Lucas, B. and Kanade, T. (1981). An iterative image registration technique with an application to stereovision. In DARPA IU Workshop, pages 121-130.
- Mac Aodha, O., Humayun, A., Pollefeys, M., and Brostow, G. J. (2013). Learning a confidence measure for optical flow. IEEE Trans. Pattern Anal. Mach. Intell., 35(5):1107-1120.
- Márquez-Valle, P., Gil, D., and Hernàndez-Sabaté, A. (2012). A complete confidence framework for optical flow. In ECCV Workshops, volume 7584 of LNCS, pages 124-133. Springer.
- McCane, B., Novins, K., Crannitch, D., and Galvin, B. (2001). On Benchmarking Optical Flow. Computer Vision and Image Understanding, 84(1).
- Senst, T., Eiselein, V., and Sikora, T. (2012). Robust local optical flow for feature tracking. IEEE Trans. Circuits Syst. Video Techn., 22(9):1377-1387.
- Shi, J. and Tomasi, C. (1994). Good features to track. In CVPR, pages 593-600.
- Singh, A. (1990). An estimation-theoretic framework for discontinuous flow fields. In ICCV, pages 168-177.
- Sundaram, N., Brox, T., and Keutzer, K. (2010). Dense point trajectories by gpu-accelerated large displacement optical flow. In ECCV, pages 438-451.
Paper Citation
in Harvard Style
Márquez-Valle P., Gil D., Mester R. and Hernàndez-Sabaté A. (2014). Local Analysis of Confidence Measures for Optical Flow Quality Evaluation . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-009-3, pages 450-457. DOI: 10.5220/0004663304500457
in Bibtex Style
@conference{visapp14,
author={Patricia Márquez-Valle and Debora Gil and Rudolf Mester and Aura Hernàndez-Sabaté},
title={Local Analysis of Confidence Measures for Optical Flow Quality Evaluation},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={450-457},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004663304500457},
isbn={978-989-758-009-3},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014)
TI - Local Analysis of Confidence Measures for Optical Flow Quality Evaluation
SN - 978-989-758-009-3
AU - Márquez-Valle P.
AU - Gil D.
AU - Mester R.
AU - Hernàndez-Sabaté A.
PY - 2014
SP - 450
EP - 457
DO - 10.5220/0004663304500457