Surface Plasmon Devices for Nanoscale Integration with Electronic Device on Silicon - Optical Signal Transmission and Detection through Surface Plasmon on Nanoscale Circuit

M. Fukuda, T. Aihara, M. Fukuhara, A. Takeda, Y. Ishii, T. Ishiyama

2014

Abstract

This paper discusses the architecture of surface plasmon devices for silicon-based nanoscale-integrated circuits. A suitable structure for surface plasmon devices integrated monolithically with electronic devices is described based on surface plasmon devices fabricated in our group. These devices were fabricated on silicon with conventional CMOS processes. In the devices, light-wave signals are converted into surface plasmon signals with a grating and detected with a Schottky-type diode on a silicon substrate. Both intensity and frequency signals are transmitted along the surface plasmon waveguide in the nanoscale circuit. Such signals were easily amplified with MOSFETs integrated monolithically on the silicon substrate. Here, the wavelength of light used in the circuit is set within the 1550-nm-wavelength band to prevent signals absorption by silicon. This can lead to a simpler structure for waveguides and devices on silicon substrates. These techniques and devices will open a new phase for surface plasmon circuits integrated with electronic devices on silicon substrates.

References

  1. Aihara, T, Nakagawa, K. Fukuhara, M, Yu, Y. L, Yamaguchi, K, Fukuda, M. (2011) Optical frequency signal detection through surface plsmon polaritons. Appl. Phys. Lett. 99, 043111-1-043000-3.
  2. Aihara, T, Fukuda. M. (2012) Observation of plasmonic frequency-modulated signal transmission. In IEEE Optical MEMS & Nanophotonics 2012 (65) Alberta, Canada. IEEE.
  3. Aihara, T, Fukuda. M. (2012) Transmission properties of surface-plsmon-polariton coherence. Appl. Phys. Lett. 100, 213115-1-213115-4.
  4. Aihara, T, Fukuhara, M, Takeda, A, Futagawa, M, ¿??, Sawada, K. Fukuda, M. (2013) Monolithic Integration of surface plasmon detector and metal-oxidesemiconductor field-effect transistors. IEEE Photonics J. 5, 6800609.
  5. Akbari, A, Tait, R. N, Berini, P. (2010) Surface plasmon waveguide Schottky detector. Opt. Express 18, 8505- 8514.
  6. Barnes, W. L, Dereux, A, Ebbesen, T. W. (2003) Surface plasmon subwavelength optics. Nature 424, 824-830.
  7. Boltasseva, A, Nikolajsen, T, Leosson, K, Kjaer, K, Larsen, M. S, Bozhevolnyi, S. I. (2005) Integrated optical components utilizing long-range surface plasmon polaritons. J. Lightwave Technol. 23, 413- 422.
  8. Sergey, I, Bozhevolnyi, Valentyn, S, Volkov, Devaux, E, Laluet, J. -Y, Ebbesen, T. W. (2006) Channel Plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508-511.
  9. Casalino, M, Sirleto, L, Lodice, M, Saffioti, N, Gioffre, M, Rendina, I, Coppola, G. (2010) Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide. Appl. Phys. Lett. 96, 241112-1-241112-3.
  10. Ebbesen, T. W, Genet, C, Boshevolnyi, S. I. (2008) Surface Plasmon circuitry. Phys. Today, May, 44-50.
  11. Fukuda, M, Yamasaki, Y, Oota, N, Utsumi, A. (2007) Optical near-field generation and detection by using metal-dielectric film fabricated from silver paste and spherical fused silica. IEEE Photon. Technol. Lett. 19, 1160-1162.
  12. Fukuda, M, Utsumi, A, Funato, H, Tohyama, M, Takemoto, N, Yamamoto, S, Yamasaki, Y, Tanabe, T. (2008) Performance of Random Metal-dielectric film on optical signal transmission. IEEE Photon. Technol. Lett. 20, 590-592.
  13. Fukuda, M, Aihara, T, Yamaguchi, K, Ling, Y. Y, Miyaji, K, Tohyama, M. (2010) Light detection enhanced by surface plasmon resonance in metal film. Appl. Phys. Lett. 96, 153107-1-153107-3.
  14. Fukuhara, M, Aihara, T, Ushii, Y., Fukuda, M. (2012) Optical frequency signal transmission via localized surface plasmons. In IEEE Photonics Conference 2012 (23- 27) Burlingame. IEEE.
  15. Goykhman, I, Desiatov, B, Khurgin, J, Shappir, J, Levy, U. (2012) Waveguide based compact silicon Schottky photodetector with enhances responsivity in the telecom spectral band. Opt. Express 20, 28594-28602.
  16. Hashemi, M, Farzad, M. H, Mortensen, N. A, Ziao, S. (2013) Enhance plasmonc light absorption for silicon Schottky-barrier photodetectors. Plasmoncs 8, 1059- 1064.
  17. Kim, J. T, Ju, J. J, Park, S, Kim, M. -S, Park, S. K, Lee, M. -H. (2008) Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides. Opt. Express 16, 13133-13138.
  18. Maier, S. A, Kik, P. G, Atwater, A. (2002) Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss. Appl. Phys. Lett. 81, 1714-1716.
  19. Mead, C. A, Spitzer, W. G, (1963) Photoemission from Au and Cu into CdS . Appl. Phys. Lett., 2, 74-75.
  20. Nikolajsen, T, Leosson, K, Salakhutdinov, I, Bozhevolnyi, S. I. (2003) Polymer-based surface plasmon-polariton stripe waveguides at telecommunication wavelengths. Appl. Phys. Lett. 82, 668-670.
  21. Takeda, A, Aihara, T, Fukuhara, M, Ishii, Y, Fukuda, M. (2013) Optimal design of photodetector with multi-slit grating. In IEEE Optical MEMS & Nanophotonics 2013 Kanazawa, Japan. IEEE (accepted).
  22. Verhagen, E, Spasenovic, M, Polman, A, Kuipers, L. (2009) Nanowire Plasmon excitation by adiabatic mode transformation. Phys. Rev. Lett. 102, 203904-1- 203904-4.
  23. Yatsui, T, Kourogi, M, Ohtsu, M. (2001) Plasmon waveguide for optical far/near-field conversion. Appl. Phys. Lett. 79, 4583-4585.
Download


Paper Citation


in Harvard Style

Fukuda M., Aihara T., Fukuhara M., Takeda A., Ishii Y. and Ishiyama T. (2014). Surface Plasmon Devices for Nanoscale Integration with Electronic Device on Silicon - Optical Signal Transmission and Detection through Surface Plasmon on Nanoscale Circuit . In Proceedings of 2nd International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS, ISBN 978-989-758-008-6, pages 152-157. DOI: 10.5220/0004680501520157


in Bibtex Style

@conference{photoptics14,
author={M. Fukuda and T. Aihara and M. Fukuhara and A. Takeda and Y. Ishii and T. Ishiyama},
title={Surface Plasmon Devices for Nanoscale Integration with Electronic Device on Silicon - Optical Signal Transmission and Detection through Surface Plasmon on Nanoscale Circuit },
booktitle={Proceedings of 2nd International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,},
year={2014},
pages={152-157},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004680501520157},
isbn={978-989-758-008-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of 2nd International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,
TI - Surface Plasmon Devices for Nanoscale Integration with Electronic Device on Silicon - Optical Signal Transmission and Detection through Surface Plasmon on Nanoscale Circuit
SN - 978-989-758-008-6
AU - Fukuda M.
AU - Aihara T.
AU - Fukuhara M.
AU - Takeda A.
AU - Ishii Y.
AU - Ishiyama T.
PY - 2014
SP - 152
EP - 157
DO - 10.5220/0004680501520157