Face Pose Tracking under Arbitrary Illumination Changes

Ahmed Rekik, Achraf Ben-Hamadou, Walid Mahdi

2014

Abstract

This paper presents a new method for 3D face pose tracking in arbitrary illumination change conditions using color image and depth data acquired by RGB-D cameras (e.g., Microsoft Kinect, Asus Xtion Pro Live, etc.). The method is based on an optimization process of an objective function combining photometric and geometric energy. The geometric energy is computed from depth data while the photometric energy is computed at each frame by comparing the current face texture to its corresponding in the reference face texture defined in the first frame. To handle the effect of changing lighting condition, we use a facial illumination model in order to solve which lighting variations has to be applied to the current face texture making it as close as possible to the reference texture. We demonstrate the accuracy and the robustness of our method in normal lighting conditions by performing a set of experiments on the Biwi Kinect head pose database. Moreover, the robustness to illumination changes is evaluated using a set of sequences for different persons recorded in severe lighting condition changes. These experiments show that our method is robust and precise under both normal and severe lighting conditions.

References

  1. Ahlberg, J. (2001). Candide-3 - an updated parameterised face. Technical report.
  2. Baltrus?aitis, T., Robinson, P., and Morency, L.-P. (2012). 3d constrained local model for rigid and non-rigid facial tracking. In IEEE CVPR, pages 2610-2617.
  3. Ben-Hamadou, A., Soussen, C., Daul, C., Blondel, W., and Wolf, D. (2010). Flexible projector calibration for active stereoscopic systems. In 2010 IEEE International Conference on Image Processing, pages 4241-4244, Hong Kong, Hong Kong.
  4. Ben-Hamadou, A., Soussen, C., Daul, C., Blondel, W., and Wolf, D. (2013). Flexible calibration of structuredlight systems projecting point patterns. Computer Vision and Image Understanding, 117(10):1468-1481.
  5. Cai, Q., Gallup, D., Zhang, C., and Zhang, Z. (2010). 3d deformable face tracking with a commodity depth camera. In ECCV, pages 229-242.
  6. Fanelli, G., Dantone, M., Gall, J., Fossati, A., and Van Gool, L. (2013). Random forests for real time 3d face analysis. International Journal of Computer Vision, 101(3):437-458.
  7. Fanelli, G., Weise, T., Gall, J., and Gool, L. V. (2011). Real time head pose estimation from consumer depth cameras. In IEEE ICPR, pages 101-110.
  8. Maurel, P. (2008). Shape gradients, shape warping and medical application to facial expression analysis. PhD thesis, Ecole Doctorale de Sciences Mathématiques de Paris Centre.
  9. Murphy-Chutorian, E. and Trivedi, M. M. (2009). Head pose estimation in computer vision: A survey. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31(4):607-626.
  10. Nelder, J. A. and Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7(4):308-313.
  11. Padeleris, P., Zabulis, X., and Argyros, A. A. (2012). Head pose estimation on depth data based on particle swarm optimization. In IEEE CVPR Workshops, pages 42- 49.
  12. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2007). Numerical recipes: The art of scientific computing. Cambridge Univ. Press, New York, 3rd edition.
  13. Rekik, A., Ben-Hamadou, A., and Mahdi, W. (2013). 3d face pose tracking using low quality depth cameras. In VISAPP, pages 223-228.
  14. Silveira, G. and Malis, E. (2007). Real-time visual tracking under arbitrary illumination changes. In IEEE CVPR, pages 1-6.
  15. Smisek, J., Jancosek, M., and Pajdla, T. (2013). 3d with kinect. In Consumer Depth Cameras for Computer Vision, pages 3-25. Springer.
  16. Valstar, M. F., Martinez, B., Binefa, X., and Pantic, M. (2010). Facial point detection using boosted regression and graph models. In IEEE CVPR, pages 2729- 2736.
  17. Yin, L., Wei, X., Longo, P., and Bhuvanesh, A. (2006). Analyzing facial expressions using Intensity-Variant 3D data for human computer interaction. In IEEE ICPR, pages 1248-1251.
  18. Zhou, S., Chellappa, R., and Jacobs, D. (2004). Characterization of human faces under illumination variations using rank, integrability, and symmetry constraints. Computer Vision-ECCV 2004, pages 588-601.
Download


Paper Citation


in Harvard Style

Rekik A., Ben-Hamadou A. and Mahdi W. (2014). Face Pose Tracking under Arbitrary Illumination Changes . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-009-3, pages 570-575. DOI: 10.5220/0004686705700575


in Bibtex Style

@conference{visapp14,
author={Ahmed Rekik and Achraf Ben-Hamadou and Walid Mahdi},
title={Face Pose Tracking under Arbitrary Illumination Changes},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={570-575},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004686705700575},
isbn={978-989-758-009-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014)
TI - Face Pose Tracking under Arbitrary Illumination Changes
SN - 978-989-758-009-3
AU - Rekik A.
AU - Ben-Hamadou A.
AU - Mahdi W.
PY - 2014
SP - 570
EP - 575
DO - 10.5220/0004686705700575