Shape Segmentation using Medial Point Clouds with Applications to Dental Cast Analysis

Jacek Kustra, Andrei Jalba, Alexandru Telea

2014

Abstract

We present an automatic surface segmentation method for dental cast scans based on the point density properties of the surface skeleton of such shapes. We produce quasi-flat segments separated by soft ridges, in contrast to classical surface segmentation methods that require sharp ridges. We compute the surface skeleton by a fast 3D skeletonization technique followed by its regularization using surface geodesics. We segment the resulting skeleton by a mean-shift approach and transfer the segmentation results back to the surface. We demonstrate our results on an industrial dental-cast segmentation application and several generic 3D shape models.

References

  1. Amenta, N., Choi, S., and Kolluri, R. (2001). The power crust. In Proc. SMA, pages 65-73. ACM.
  2. Atron, Inc. (2013). 3D intraoral scanner. www.atron3d.com/en/products/id-3d-intraoral-scanner.html.
  3. Blum, H. (1967). A transformation for extracting new descriptors of shape. In Wathen-Dunn, W., editor, Models for the Perception of Speech and Visual Form, pages 362-380. MIT Press, Cambridge.
  4. Borgefors, G., di Baja, G., and Svensson, S. (2009). Decomposing digital 3D shapes using a multiresolution structure. In Proc. DGCI, pages 19-28. Springer.
  5. Bouix, S., Siddiqi, K., and Tannenbaum, A. (2005). Flux driven automatic centerline extraction. Medical Image Analysis, 9(3):209-221.
  6. Bouix, S., Siddiqi, K., Tannenbaum, A., and Zucker, S. (2006). Medial axis computation and evolution. In Statistics and analysis of shape, chapter 1, pages 1- 28. Springer LNCS.
  7. Clarenz, U., Griebel, M., Schewitzer, M., and Telea, A. (2004). Feature sensitive multiscale editing on surfaces. Visual Computer, 20(5):329-343.
  8. Comaniciu, D. and Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE TPAMI, 24(5):603-619.
  9. Cornea, N., Silver, D., and Min, P. (2007). Curve-skeleton properties, applications, and algorithms. IEEE TVCG, 13(3):87-95.
  10. Frey, P. (2001). YAMS: a fully automatic adaptive isotropic surface remeshing procedure. tech. rep. 0252, INRIA. http://www.ann.jussieu.fr/ frey.
  11. Garland, M., Willmott, A., and Heckbert, P. (2001). Hierarchical face clustering on polygonal surfaces. In Proc. ACM Symp. I3D, pages 49-58.
  12. Hirogaki, Y., Sohmura, T., Satoh, H., Takahashi, J., and Takada, K. (2001). Complete 3-d reconstruction of dental cast shape using perceptual grouping. Medical Imaging, IEEE Transactions on, 20(10):1093-1101.
  13. Jalba, A., Kustra, J., and Telea, A. (2013). Surface and curve skeletonization of large 3D models on the GPU. IEEE TPAMI, 35(6):1495-1508.
  14. Kondo, T., Ong, S., and Foong, K. W. C. (2004). Tooth segmentation of dental study models using range images. IEEE Trans Med Imag, 23(3):350-362.
  15. Kronfeld, T., Brunner, D., and Brunnett, G. (2010). Snakebased segmentation of teeth from virtual dental casts. CAGD, 7(2):221-233.
  16. Ma, J., Bae, S., and Choi, S. (2012). 3D medial axis point approximation using nearest neighbors and the normal field. Vis. Comput., 28(1):7-19.
  17. Mangan, A. and Whitaker, R. (1999). Partitioning 3D surface meshes using watershed segmentation. IEEE TVCG, 5(4):308-321.
  18. Mount, D. and Arya, S. (2011). Approximate nearest neighbor search software. www.cs.umd.edu/ mount/ANN.
  19. Palagyi, K. and Kuba, A. (1999). Directional 3D thinning using 8 subiterations. In Proc. DGCI, volume 1568, pages 325-336. Springer LNCS.
  20. Pizer, S., Siddiqi, K., Szekely, G., Damon, J., and Zucker, S. (2003). Multiscale medial loci and their properties. IJCV, 55(2-3):155-179.
  21. Provot, L. and Debled-Rennesson, I. (2008). Segmentation of noisy discrete surfaces. In Proc. IWCIA, volume 4958, pages 160-171. Springer LNCS.
  22. Pudney, C. (1998). Distance-ordered homotopic thinning: A skeletonization algorithm for 3D digital images. CVIU, 72(3):404-413.
  23. Reniers, D., Jalba, A., and Telea, A. (2008a). Robust classification and analysis of anatomical surfaces using 3D skeletons. In Proc. VCBM, pages 61-68. EG Press.
  24. Reniers, D. and Telea, A. (2007). Tolerance-based feature transforms. In Advances in Comp. Graphics and Comp. Vision, pages 187-200. Springer.
  25. Reniers, D. and Telea, A. (2008a). Part-type segmentation of articulated voxel-shapes using the junction rule. CGF, 27(7):1837-1844.
  26. Reniers, D. and Telea, A. (2008b). Patch-type segmentation of voxel shapes using simplified surface skeletons. CGF, 27(7):1954-1962.
  27. Reniers, D., van Wijk, J. J., and Telea, A. (2008b). Computing multiscale skeletons of genus 0 objects using a global importance measure. IEEE TVCG, 14(2):355- 368.
  28. Shamir, A. (2004). A formulation of boundary mesh segmentation. In Proc.3DPVT, pages 378-386.
  29. Siddiqi, K., Bouix, S., Tannenbaum, A., and Zucker, S. (2002). Hamilton-Jacobi skeletons. IJCV, 48(3):215- 231.
  30. Siddiqi, K. and Pizer, S. (2009). Medial Representations: Mathematics, Algorithms and Applications. Springer.
  31. Stolpner, S., Whitesides, S., and Siddiqi, K. (2009). Sampled medial loci and boundary differential geometry. In Proc. IEEE 3DIM, pages 87-95.
  32. Stolpner, S., Whitesides, S., and Siddiqi, K. (2011). Sampled medial loci for 3D shape representation. CVIU, 115(5):695-706.
  33. Strzodka, R. and Telea, A. (2004). Generalized distance transforms and skeletons in graphics hardware. In Proc. VisSym, pages 221-230.
  34. Telea, A. and Jalba, A. (2012). Computing curve skeletons from medial surfaces of 3D shapes. In Proc. TPCG (Eurographics UK), pages 273-280.
  35. Zhao, M., Ma, L., Tan, W., and Nie, D. (2005). Interactive tooth segmentation of dental models. In Proc. EMBS, pages 654-657.
  36. Zuckerberger, E., Tal, A., and Shlafman, S. (2002). Polyhedral surface decomposition with applications. Computers & Graphics, 26(5):733-743.
Download


Paper Citation


in Harvard Style

Kustra J., Jalba A. and Telea A. (2014). Shape Segmentation using Medial Point Clouds with Applications to Dental Cast Analysis . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-009-3, pages 162-170. DOI: 10.5220/0004688301620170


in Bibtex Style

@conference{visapp14,
author={Jacek Kustra and Andrei Jalba and Alexandru Telea},
title={Shape Segmentation using Medial Point Clouds with Applications to Dental Cast Analysis},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={162-170},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004688301620170},
isbn={978-989-758-009-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014)
TI - Shape Segmentation using Medial Point Clouds with Applications to Dental Cast Analysis
SN - 978-989-758-009-3
AU - Kustra J.
AU - Jalba A.
AU - Telea A.
PY - 2014
SP - 162
EP - 170
DO - 10.5220/0004688301620170