Joint Learning for Multi-class Object Detection
Hamidreza Odabai Fard, Mohamed Chaouch, Quoc-cuong Pham, Antoine Vacavant, Thierry Chateau
2014
Abstract
In practice, multiple objects in images are located by consecutively applying one detector for each class and taking the best confident score. In this work, we propose to show the advantage of grouping similar object classes into a hierarchical structure. While this approach has found interest in image classification, it is not analyzed for the object detection task. Each node in the hierarchy represents one decision line. All the decision lines are learned jointly using a novel problem formulation. Based on experiments using PASCAL VOC 2007 dataset, we show that our approach improves detection performance compared to a baseline approach.
References
- Aytar, Y. and Zisserman, A. (2011). Tabula rasa: Model transfer for object category detection. In IEEE International Conference on Computer Vision.
- Bengio, S., Weston, J., and Grangier, D. (2010). Label embedding trees for large multi-class tasks. In NIPS.
- Cai, L. and Hofmann, T. (2004). Hierarchical document categorization with support vector machines. CIKM.
- Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology. Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.
- Chapelle, O. and Keerthi, S. S. (2010). Efficient algorithms for ranking with svms. Inf. Retr.
- Choi, M. J., Torralba, A., and Willsky, A. S. (2012). Context models and out-of-context objects. Pattern Recognition Letters.
- Dalal, N. and Triggs, B. (2005a). Histograms of oriented gradients for human detection. In CVPR.
- Dalal, N. and Triggs, B. (2005b). Histograms of oriented gradients for human detection. In International Conference on Computer Vision & Pattern Recognition.
- Dekel, O., Keshet, J., and Singer, Y. (2004). Large margin hierarchical classification. In ICML.
- Desai, C., Ramanan, D., and Fowlkes, C. (2011). Discriminative models for multi-class object layout. IJCV.
- Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and Zisserman, A. The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. http:// www.pascal-network.org/ challenges/ VOC/ voc2007/ workshop/index.html.
- Felzenszwalb, P. F., Girshick, R. B., McAllester, D. A., and Ramanan, D. (2010). Discriminative latent variable models for object detection. In ICML.
- Fidler, S., Boben, M., and Leonardis, A. (2010). A coarseto-fine taxonomy of constellations for fast multi-class object detection. In ECCV.
- Fidler, S. and Leonardis, A. (2007). Towards scalable representations of object categories: Learning a hierarchy of parts. In CVPR.
- Gao, T. and Koller, D. (2011). Discriminative learning of relaxed hierarchy for large-scale visual recognition. In ICCV.
- Griffin, G. and Perona, P. (2008). Learning and using taxonomies for fast visual categorization.
- Joachims, T. (1999). Advances in kernel methods. chapter Making large-scale support vector machine learning practical.
- Joachims, T. (2002). Optimizing search engines using clickthrough data. In KDD.
- Joachims, T., Finley, T., and Yu, C.-N. (2009). Cuttingplane training of structural svms. Machine Learning.
- Joshua B. Tenenbaum1, Charles Kemp, T. L. G. N. D. G. (2011). How to grow a mind: Statistics, structure, and abstraction. Science.
- Kressel, U. H.-G. (1999). Advances in kernel methods. chapter Pairwise classification and support vector machines.
- Lim, J. J., Salakhutdinov, R., and Torralba, A. (2011). Transfer learning by borrowing examples for multiclass object detection. In Neural Information Processing Systems (NIPS).
- Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing.
- Marszalek, M. and Schmid, C. (2008). Constructing category hierarchies for visual recognition. In ECCV.
- Opelt, A., Pinz, A., and Zisserman, A. (2008). Learning an alphabet of shape and appearance for multi-class object detection. IJCV.
- Ott, P. and Everingham, M. (2011). Shared parts for deformable part-based models. In CVPR.
- Platt, J. C., Cristianini, N., and Shawe-taylor, J. (2000). Large margin dags for multiclass classification.
- Razavi, N., Gall, J., and Gool, L. J. V. (2011). Scalable multi-class object detection. In CVPR.
- Salakhutdinov, R., Torralba, A., and Tenenbaum, J. B. (2011). Learning to share visual appearance for multiclass object detection. In CVPR.
- Torralba, A., Murphy, K. P., and Freeman, W. T. (2004). Sharing features: efficient boosting procedures for multiclass object detection. In CVPR.
- Torralba, A., Murphy, K. P., and Freeman, W. T. (2007). Sharing visual features for multiclass and multiview object detection. PAMI.
- Tsochantaridis, I., Hofmann, T., Joachims, T., and Altun, Y. (2004). Support vector machine learning for interdependent and structured output spaces. In ICML.
- Xiao, L., Zhou, D., and Wu, M. (2011). Hierarchical classification via orthogonal transfer. In ICML.
- Zhang, J., Huang, K., Yu, Y., and Tan, T. (2011). Boosted local structured hog-lbp for object localization. In CVPR.
- Zhu, L., Chen, Y., Torralba, A., Freeman, W. T., and Yuille, A. L. (2010). Part and appearance sharing: Recursive compositional models for multi-view. In CVPR.
Paper Citation
in Harvard Style
Odabai Fard H., Chaouch M., Pham Q., Vacavant A. and Chateau T. (2014). Joint Learning for Multi-class Object Detection . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-004-8, pages 104-112. DOI: 10.5220/0004692401040112
in Bibtex Style
@conference{visapp14,
author={Hamidreza Odabai Fard and Mohamed Chaouch and Quoc-cuong Pham and Antoine Vacavant and Thierry Chateau},
title={Joint Learning for Multi-class Object Detection},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={104-112},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004692401040112},
isbn={978-989-758-004-8},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014)
TI - Joint Learning for Multi-class Object Detection
SN - 978-989-758-004-8
AU - Odabai Fard H.
AU - Chaouch M.
AU - Pham Q.
AU - Vacavant A.
AU - Chateau T.
PY - 2014
SP - 104
EP - 112
DO - 10.5220/0004692401040112