An Intelligent Inference Engine using Ontology based Clinical Pathways for Diagnosis and Management of Diabetes
Shreelakshmi G. M., Kavya A. K. Alse, AnanthaKrishna Thantri, Krupesha D., Srinivas A.
2014
Abstract
‘Clinical pathways’ for Diabetes Management has attracted the attention of researchers in the last decade. Ontologies have been in use to represent knowledge pertaining to clinical pathways and to arrive at critical patient-specific decisions. This paper proposes an ontological framework to represent the diabetes related data. The main contribution of the paper is in developing an inference model that helps a General Practitioner (GP) to arrive at the most appropriate clinical pathway for a patient specific condition. The mobile application developed for this purpose makes it very useful for a medical practitioner in a remote rural location to follow a systematic process to arrive at patient specific decisions, based on the Ontological inferences received from the remote server.
References
- Ahmed, A. S. (2011, July). Towards an Online Diabetes Type II Self Management System: Ontology Framework. In Computational Intelligence, Communication Systems and Networks (CICSyN), 2011 Third International Conference on (pp. 37-41). IEEE.
- Alhazbi, S., Alkhateeb, M., Abdi, A., Janahi, A., & Daradkeh, G. (2012, April). Mobile application for diabetes control in Qatar. In Computing Technology and Information Management (ICCM), 2012 8th International Conference on (Vol. 2, pp. 763-766). IEEE.
- Chammas, N., Juric, R., Koay, N., Gurupur, V., & Suh,. C. (2013, January). Towards a Software Tool for Raising Awareness of Diabetic Foot in Diabetic Patients. In System Sciences (HICSS), 2013 46th Hawaii International Conference on (pp. 2646-2655). IEEE.
- Chen, J. X., Su, S. L., & Chang, C. H. (2010, July). Diabetes care decision support system. In Industrial and Information Systems (IIS), 2010 2nd Internationa Conference on (Vol. 1, pp. 323-326). IEEE.
- Chen, M., & Hadzic, M. (2010, October). Towards a methodology for Lipoprotein Ontology. In ComputerBased Medical Systems (CBMS), 2010 IEEE 23rd International Symposium on (pp. 415-420). IEEE.
- Chen, R. C., Bau, C. T., & Huang, Y. H. (2010, July). Development of anti-diabetic drugs ontology for guideline-based clinical drugs recommend system using OWL and SWRL. In Fuzzy Systems (FUZZ), 2010 IEEE International Conference on (pp. 1-6). IEEE.
- Chen, R. C., Chiu, J. Y., & Bau, C. T. (2011, July). The recommendation of medicines based on multiple criteria decision making and domain ontology-An example of anti-diabetic medicines. In Machine Learning and Cybernetics (ICMLC), 2011 International Conference on (Vol. 1, pp. 27-32). IEEE.
- Hajja, A., Wieczorkowska, A. A., Ras, Z. W., & Gubrynowicz, R. (2013). Pair-Based object-driven action rules. In New Frontiers in Mining Complex Patterns (pp. 79-93). Springer Berlin Heidelberg.
- Islam, S., Freytag, G., & Shankar, R. (2012, August). Intelligent health information system to empower patients with chronic diseases. In Information Reuse and Integration (IRI), 2012 IEEE 13th International Conference on (pp. 734-737). IEEE.
- Kurozumi, K., Lan, S. T., Wang, M. H., Lee, C. S., Kawaguchi, M., Tsumoto, S., & Tsuji, H. (2013, July). FML-based Japanese diet assessment system. In Fuzzy Systems (FUZZ), 2013 IEEE International Conference on (pp. 1-6). IEEE.
- Lee, C. S., Wang, M. H., & Hagras, H. (2010). A type-2 fuzzy ontology and its application to personal diabeticdiet recommendation. In Fuzzy Systems, IEEE Transactions on, 18(2), 374-395.
- Lin, Y. (2011). Refining Ontology for Glucose Metabolism Disorders. ICBO.
- McGarry, K., Garfield, S., & Wermter, S. (2007, June). Auto-extraction, representation and integration of a diabetes ontology using Bayesian networks. In Computer-Based Medical Systems, 2007. CBMS'07. Twentieth IEEE International Symposium on (pp. 612- 617). IEEE.
- Nimmagadda, S. L., Nimmagadda, S. K., & Dreher, H. (2011, July). Multidimensional data warehousing &mining of diabetes & food-domain ontologies for eHealth. In Industrial Informatics (INDIN), 2011 9th IEEE International Conference on (pp. 682-687). IEEE.
Paper Citation
in Harvard Style
G. M. S., A. K. Alse K., Thantri A., D. K. and A. S. (2014). An Intelligent Inference Engine using Ontology based Clinical Pathways for Diagnosis and Management of Diabetes . In Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2014) ISBN 978-989-758-010-9, pages 143-150. DOI: 10.5220/0004707301430150
in Bibtex Style
@conference{healthinf14,
author={Shreelakshmi G. M. and Kavya A. K. Alse and AnanthaKrishna Thantri and Krupesha D. and Srinivas A.},
title={An Intelligent Inference Engine using Ontology based Clinical Pathways for Diagnosis and Management of Diabetes},
booktitle={Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2014)},
year={2014},
pages={143-150},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004707301430150},
isbn={978-989-758-010-9},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2014)
TI - An Intelligent Inference Engine using Ontology based Clinical Pathways for Diagnosis and Management of Diabetes
SN - 978-989-758-010-9
AU - G. M. S.
AU - A. K. Alse K.
AU - Thantri A.
AU - D. K.
AU - A. S.
PY - 2014
SP - 143
EP - 150
DO - 10.5220/0004707301430150