Gamma-ray Dose-rate Dependence of Fiber Bragg Grating Inscribed Germano-silicate Glass Optical Fiber with Boron-doped Inner Cladding
Seongmin Ju, Youngwoong Kim, Seongmook Jeong, Jong-Yeol Kim, Nam-Ho Lee, Hyun-Kyu Jung, Won-Taek Han
2014
Abstract
The dose-rate effect on the spectral characteristics of the fiber Bragg grating written in the germano-silicate optical fiber incorporated with boron oxide in the inner cladding under gamma-ray radiation was investigated for sensing applications. The Bragg peak shift of the FBG was found to saturate at a 78 pm level and a radiation-induced attenuation of 1.345 dB/m was obtained with the accumulated dose-rate of 22.86 kGy/h. However, the full-width half maximum bandwidth of the FBG remained practically unchanged.
References
- Shah, J., 1975. Effects of Enviromental Nuclear Radiation on Optical Fibers, The Bell System Technical Journal, vol. 54, no. 7, pp. 1207-1213.
- Gusarov, A. I., Berghmans, F., Deparis, O., Fernandez, A. F., Defosse, Y., Mégret, P., Decréton, M., and Blondel, M., 1999. High Total Dose Radiation Effects on Temperature Sensing Fiber Bragg Gratings, IEEE Photon. Technol. Lett., vol. 11, no. 9, pp. 1159-1161.
- Gusarov, A. I., Berghmans, F., Fernandez, A. F., Deparis, O., Defosse, Y., Starodubov, D., Decréton, M., Mégret, P., and Blondel, M., 2000. Behavior of Fiber Bragg Grating Under High Total Dose Gemma Radiation, IEEE Trans. Nucl. Sci., vol. 47, no. 3, pp. 688-692.
- Fernandez, A. F., Brichard, B., Berghmans, F., and Decréton, M., 2002. Dose-Rate Dependencies in Gamma-Irradiated Fiber Bragg Grating Filters, IEEE Trans. Nucl. Sci., vol. 49, no. 6, pp. 2874-2878.
- Gusarov, A., Kinet, D., Caucheteur, C., Wuilpart, M., and Mégret, P., 2010. Gamma Radiation Induced ShortWavelength Shift of the Bragg Peak in Type I Fiber Gratings, IEEE Trans. Nucl. Sci., vol. 57, no. 6, pp. 3775-3778.
- Gusarov, A., Vasiliev, S., Medvedkov, O., Mckenzie, I., and Berghmans, F., 2008. Stabilization of fiber Bragg Gratings against Gamma Radiation, IEEE Trans. Nucl. Sci., vol. 55, no. 4, pp. 2205-2212.
- Evans, B. D., 1998. The Role of Hydrogen as a Radiation Protection Agent at Low Temperature in a Low-OH, Pure Silica Optical Fiber, IEEE Trans. Nucl. Sci., vol. 35, no. 6, pp. 1215-1220.
- Iino, A. and Tamura, J., 2010. Radiation Resistivity in Silica Optical Fibers, J. Lightwave Technol., vol. 6, no. 2, pp. 145-149.
- Sanada, K., Shamoto, N., and Inada, K., 1994. Radiation Resistance of Fluorine-doped Silica-core Fibers, J. Non-Cryst. Solids, vol. 179, no. 4, pp. 339-344.
- Henschel, H., Kuhnhenn, J., and Weinand, U., 2005. Radiation Hard Optical Fibers, in Proceedings of Optical Fiber Communication Conference, (Academic, Anaheim, California, 2005), OThI1, pp. 1-3.
- Nagasawa, K., Hoshi, Y., Ohki, Y., and Yahagi, K., 1985. Improvement of Radiation Resistance of Pure Silica Core Fibers by Hydrogen Treatment, Jpn. J. Appl. Phys., vol. 24, no. 9, pp. 124-1228.
- Kakuta, T., Shikama, T., Narui, M., and Sagawa, T., 1998. Behavior of Optical Fibers under Heavy Irradiation, Fusion Eng. Des., vol. 41, no. 1, pp. 201-205.
- Dianov, E. M., Golant, K. M., Khrapko, R. R., and Tomashuk, A. L., 1995. Nitrogen Doped Silica Core Fibers: A New Type of Radiation-resistant Fiber, Electron. Lett., vol. 31, no. 17, pp. 1490-1491.
- Ju, S., Watekar, P. R., and Han, W.-T., 2010. Enhanced Sensitivity of the FBG Temperature Sensor Based on the PbO-GeO2-SiO2 Glass Optical Fiber, J. Lightwave Technol., vol. 28, no. 18, pp. 2697-2700.
- Hill, K. O. and Meltz, G., 1997. Fiber Bragg Grating Technology Fundamentals and Overview, J. Lightwave Technol., vol. 15, no. 8, pp. 1263-1276.
- Cavaleiro, P. M., Araújo, F. M., Ferreira, L. A., Santos, J. L., and Farahi, F., 1999. Simultaneous Measurement of Strain and Temperature Using Bragg Gratings Written in Germanosilicate and Boron-Codoped Germanosilicate Fibers, IEEE Photon. Technol. Lett., vol. 11, no. 12, pp. 1635-1637.
Paper Citation
in Harvard Style
Ju S., Kim Y., Jeong S., Kim J., Lee N., Jung H. and Han W. (2014). Gamma-ray Dose-rate Dependence of Fiber Bragg Grating Inscribed Germano-silicate Glass Optical Fiber with Boron-doped Inner Cladding . In Proceedings of 2nd International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS, ISBN 978-989-758-008-6, pages 107-113. DOI: 10.5220/0004716201070113
in Bibtex Style
@conference{photoptics14,
author={Seongmin Ju and Youngwoong Kim and Seongmook Jeong and Jong-Yeol Kim and Nam-Ho Lee and Hyun-Kyu Jung and Won-Taek Han},
title={Gamma-ray Dose-rate Dependence of Fiber Bragg Grating Inscribed Germano-silicate Glass Optical Fiber with Boron-doped Inner Cladding},
booktitle={Proceedings of 2nd International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,},
year={2014},
pages={107-113},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004716201070113},
isbn={978-989-758-008-6},
}
in EndNote Style
TY - CONF
JO - Proceedings of 2nd International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,
TI - Gamma-ray Dose-rate Dependence of Fiber Bragg Grating Inscribed Germano-silicate Glass Optical Fiber with Boron-doped Inner Cladding
SN - 978-989-758-008-6
AU - Ju S.
AU - Kim Y.
AU - Jeong S.
AU - Kim J.
AU - Lee N.
AU - Jung H.
AU - Han W.
PY - 2014
SP - 107
EP - 113
DO - 10.5220/0004716201070113