A Physiological Evaluation of Immersive Experience of a View Control Method using Eyelid EMG

Masaki Omata, Satoshi Kagoshima, Yasunari Suzuki

2014

Abstract

This paper describes that the number of blood-volume pulses (BVP) and the level of skin conductance (SC) increased more with increasing immersive impression with a view control method using eyelid electromyography in virtual environment (VE) than those with a mouse control method. We have developed the view control method and the visual feedback associated with electromyography (EMG) signals of movements of user’s eyelids. The method provides a user with more immersive experiences in a virtual environment because of strong relationship between eyelid movement and visual feedback. This paper reports a physiological evaluation experiment to compare it with a common mouse input method by measuring subjects’ physiological data of their fear of an open high place in a virtual environment. Based on the results, we find the eyelid-movement input method improves the user’s immersive impression more significantly than the mouse input method.

References

  1. Agustin, J. S., Hansen, J. P., Hansen, D. W., and Skovsgaard, H. H. T. (2009). Low-cost gaze pointing and emg clicking. chi extended abstracts. CHI Extended Abstracts 2009, pages 3247-3252.
  2. Asai, K., Osawa, N., Sugimoto, Y., and Tanaka, Y. (2002). Viewpoint motion control by body position in immersive projection display. Proc. of SAC2002, pages 1074-1079.
  3. Costanza, E., Inverso, S. A., Allen, R., and Maes, P. (2007). Intimate interfaces in action: assessing the usability and subtlety of emg-based motionless gestures. Proc. of CHI 2007, pages 819-828.
  4. Gibert, G., Pruzinec, M., Schultz, T., and Stevens, C. (2009). Enhancement of human computer interaction with facial electromyographic sensors. Proc. of OZCHI 2009, pages 421-424.
  5. Haffegee, A., Alexandrov, V. N., and Barrow, R. (2007). Eye tracking and gaze vector calculation within immersive virtual environments. Proc. of VRSTACM, pages 225-226.
  6. Jr., F. C., Nguyen, D., Guerra-Filho, G., and Huber, M. (2010). Identification of static and dynamic muscle activation patterns for intuitive human/computer interfaces. Proc. of PETRA 2010.
  7. Kikuya, K., Hara, S., Shinzato, Y., Ijichi, K., Abe, H., Matsuno, T., Shikata, K., and Ohshima, T. (2011). Hyakki men: Development of a mixed reality attraction with gestural user interface. INTERACTION 2011, 2011(3):469-472.
  8. Lin, T., Hu, W., Omata, M., and Imamiya, A. (2005). Do physiological data relate to traditional usability indexes? Proc. of OZCHI 7805.
  9. Manabe, T., Tamura, H., and Tanno, K. (2009). The control experiments of the electric wheelchair using s-emg of facial muscles. Proc. FIT2009, pages 541-542.
  10. Manders, C., Farbiz, F., Tang, K. Y., Yuan, M., Chong, B., and Chua, G. G. (2008). Interacting with 3d objects in a virtual environment using an intuitive gesture system. Proc. of VRCAI08.
  11. Meehan, M., Insko, B., Whitton, M., and Brooks, F. P. (2002). Physiological measures of presence in stressful virtual environments. ACM Trans. Graph. In SIGGRAPH 7802, 21(3):645-652.
  12. Miyashita, H., Hayashi, M., and ichi Okada, K. (2008). Implementation of eog-based gaze estimation in hmd with head-tracker. Proc. of ICAT2008, pages 20-27.
  13. Nagahara, H., Yagi, Y., and Yachida, M. (2005). A wide-field-of-view catadioptrical head-mounted display. Electronics and Communications in Japan, J88- D-II(1):95-104.
  14. Oshita, M. (2006). Motion-capture-based avatar control framework in third-person view virtual environments. Proc. of ACE 7806.
  15. Ries, B., Interrante, V., Kaeding, M., and Anderson, L. (2008). The effect of self-embodiment on distance perception in immersive virtual environments. Proc. of VRST 2008, 15(5):167-170.
  16. Soleymani, M., Chanel, G., Kierkels, J. J. M., and Pun, T. (2008). Affective ranking of movie scenes using physiological signals and content analysis. Proc. of MSACM, pages 32-39.
  17. Steinicke, F., Bruder, G., Hinrichs, K. H., and Steed, A. (2009). Presence-enhancing real walking user interface for first-person video games. Proc. of ACM SIGGRAPH Symposium on Video Games, pages 111-118.
  18. TheAuthors (2011). *****. *****.
  19. Touyama, H., Hirota, K., and Hirose, M. (2006). Implementation of electromyogram interface in cabin immersive multiscreen display. Proc. of IEEE Virtual Reality 2006, pages 273-276.
  20. Valstar, M., Pantic, M., Ambadar, Z., and Cohn, J. F. (2006). Spontaneous vs. posed facial behavior: Automatic analysis of brow actions. Proc. of ICMI 7806, pages 162-170.
Download


Paper Citation


in Harvard Style

Omata M., Kagoshima S. and Suzuki Y. (2014). A Physiological Evaluation of Immersive Experience of a View Control Method using Eyelid EMG . In Proceedings of the International Conference on Physiological Computing Systems - Volume 1: PhyCS, ISBN 978-989-758-006-2, pages 224-231. DOI: 10.5220/0004719102240231


in Bibtex Style

@conference{phycs14,
author={Masaki Omata and Satoshi Kagoshima and Yasunari Suzuki},
title={A Physiological Evaluation of Immersive Experience of a View Control Method using Eyelid EMG},
booktitle={Proceedings of the International Conference on Physiological Computing Systems - Volume 1: PhyCS,},
year={2014},
pages={224-231},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004719102240231},
isbn={978-989-758-006-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Physiological Computing Systems - Volume 1: PhyCS,
TI - A Physiological Evaluation of Immersive Experience of a View Control Method using Eyelid EMG
SN - 978-989-758-006-2
AU - Omata M.
AU - Kagoshima S.
AU - Suzuki Y.
PY - 2014
SP - 224
EP - 231
DO - 10.5220/0004719102240231