Stress Recognition - A Step Outside the Lab

Julian Ramos, Jin-Hyuk Hong, Anind K. Dey

2014

Abstract

Despite the potential for stress and emotion recognition outside the lab environment, very little work has been reported that is feasible for use in the real world and much less for activities involving physical activity. In this work, we move a step forward towards a stress recognition system that works on a close to real world data set and shows a significant improvement over classification only systems. Our method uses clustering to separate the data into physical exertion levels and later performs stress classification over the discovered clusters. We validate our approach on a physiological stress dataset from 20 participants who performed 3 different activities of varying intensity under 3 different types of stimuli intended to cause stress. The results show an f-measure improvement of 130\% compared to using classification only.

References

  1. American College of Sports Medicine, 2009. ACSM's Guidelines for Exercise Testing and Prescription 8th ed., Williams & Wilkins.
  2. Arthur, D. & Vassilvitskii, S., 2007. k-means ++?: The Advantages of Careful Seeding. In SODA 7807 Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. New Orleans, Louisiana: Society for Industrial and Applied Mathematics, pp. 1027 - 1035.
  3. Bishop, C., 2006. Pattern Recognition and Machine Learning, Springer-Verlag New York, Inc.
  4. Ertin, E. et al., 2011. AutoSense. In Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems - SenSys 7811. New York, New York, USA: ACM Press, p. 274.
  5. Feldman, P. J. et al., 2004. Psychological stress, appraisal, emotion and Cardiovascular response in a public speaking task. Psychology & Health, 19(3), pp.353- 368.
  6. Fowlkes, C. et al., 2004. Spectral grouping using the Nystrom method. Pattern Analysis and machine intelligence, 26(2), pp.1-12.
  7. France, C. & Ditto, B., 1992. Cardiovascular responses to the combination of caffeine and mental arithmetic, cold pressor, and static exercise stressors. Psychophysiology, 29(3), pp.272-282.
  8. Friedman, J., Hastie, T. & Tibshirani, R., 2009. The elements of statistical learning 2nd ed., New york: Springer.
  9. Giakoumis, D., Tzovaras, D. & Hassapis, G., 2012. Subject-dependent biosignal features for increased accuracy in psychological stress detection. International Journal of Human-Computer Studies.
  10. Healey, J. a. & Picard, R.W., 2005. Detecting Stress During Real-World Driving Tasks Using Physiological Sensors. IEEE Transactions on Intelligent Transportation Systems, 6(2), pp.156-166.
  11. Hernandez, J. & Morris, R., 2011. Call center stress recognition with person-specific models. Affective Computing and Intelligent.
  12. Hong, J.-H., Ramos, J. & Dey, A., 2012. Understanding Physiological Responses to Stressors during Physical Activity. In Proceedings of the 14th international conference on Ubiquitous computing.
  13. Kim, J. & André, E., 2008. Emotion recognition based on physiological changes in music listening. IEEE transactions on pattern analysis and machine intelligence, 30(12), pp.2067-83.
  14. Kim, K. H., Bang, S.W. & Kim, S.R., 2004. Emotion recognition system using short-term monitoring of physiological signals. Medical & biological engineering & computing, 42(3), pp.419-27.
  15. Liao, W. et al., 2006. Toward a decision-theoretic framework for affect recognition and user assistance. International Journal of Human-Computer Studies, 64(9), pp.847-873.
  16. Lisetti, C. L., 2004. Using Noninvasive Wearable Computers to Recognize Human Emotions from Physiological Signals. EURASIP Journal on Applied Signal Processing, pp.1672-1687.
  17. Mark, H. et al., 2009. The WEKA Data Mining Software: An Update. SIGKDD Explorations, 11(1).
  18. Mitchell, T., 1997. Machine Learning, McGraw-Hill, Inc.
  19. Ng, A. Y., Jordan, M.I. & Yair, W., 2001. On spectral clustering: Analysis and an algorithm. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS.
  20. Novak, D., Mihelj, M. & Ziherl, J., 2011. Psychophysiological measurements in a biocooperative feedback loop for upper extremity rehabilitation. … and Rehabilitation …, 19(4), pp.400- 410.
  21. Picard, R. & Vyzas, E., 2001. Toward machine emotional intelligence: Analysis of affective physiological state. and Machine Intelligence,, 23(10), pp.1175-1191.
  22. Rainville, P. et al., 2006. Basic emotions are associated with distinct patterns of cardiorespiratory activity. International journal of psychophysiology?: official journal of the International Organization of Psychophysiology, 61(1), pp.5-18.
  23. Ravi, N., Dandekar, N. & Mysore, P., 2005. Activity recognition from accelerometer data. In Proceedings of the Seventeenth Conference on Innovative Applications of Artificial Intelligence(IAAI. pp. 1541- 1546.
  24. Robergs, R. & Landwehr, R., 2002. The surprising history of the “HRmax= 220-age” equation. Journal of exercise physiology, 5(2).
  25. Roth, D., Bachtler, S. & Fillingim, R., 1990. Acute emotional and cardiovascular effects of stressful mental work during aerobic exercise. Psychophysiology.
  26. Schiller, J. S. et al., 2012. Summary health statistics for U.S. adults: National Health Interview Survey, 2010. Vital and health statistics. Series 10, Data from the National Health Survey, (252), pp.1-207.
  27. Sharma, N. & Gedeon, T., 2012. Objective measures, sensors and computational techniques for stress recognition and classification: A survey. Computer methods and programs in biomedicine, 108(3), pp.1287-1301.
  28. Stäger, M., Lukowicz, P. & Tröster, G., 2007. Power and accuracy trade-offs in sound-based context recognition systems. Pervasive and Mobile Computing, 3(3), pp.300-327.
  29. Wagner, J., Kim, J. & Andre, E., 2005. From physiological signals to emotions implementing and comparing selected methods for feature extraction and classification. In Multimedia and Expo, 2005. ICME 2005. IEEE International Conference on. pp. pp.940- 943.
  30. Webb, H. E. et al., 2008. Psychological stress during exercise: cardiorespiratory and hormonal responses. European journal of applied physiology, 104(6), pp.973-81.
  31. Yan, D., Huang, L. & Jordan, M. I., 2009. Fast approximate spectral clustering. Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD 7809, p.907.
  32. Yao, Y.-J. et al., 2008. Heart rate and respiration responses to real traffic pattern flight. Applied psychophysiology and biofeedback, 33(4), pp.203-9.
Download


Paper Citation


in Harvard Style

Ramos J., Hong J. and K. Dey A. (2014). Stress Recognition - A Step Outside the Lab . In Proceedings of the International Conference on Physiological Computing Systems - Volume 1: PhyCS, ISBN 978-989-758-006-2, pages 107-118. DOI: 10.5220/0004725701070118


in Bibtex Style

@conference{phycs14,
author={Julian Ramos and Jin-Hyuk Hong and Anind K. Dey},
title={Stress Recognition - A Step Outside the Lab},
booktitle={Proceedings of the International Conference on Physiological Computing Systems - Volume 1: PhyCS,},
year={2014},
pages={107-118},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004725701070118},
isbn={978-989-758-006-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Physiological Computing Systems - Volume 1: PhyCS,
TI - Stress Recognition - A Step Outside the Lab
SN - 978-989-758-006-2
AU - Ramos J.
AU - Hong J.
AU - K. Dey A.
PY - 2014
SP - 107
EP - 118
DO - 10.5220/0004725701070118