2D-3D Face Recognition via Restricted Boltzmann Machines
Xiaolong Wang, Vincent Ly, Rui Guo, Chandra Kambhamettu
2014
Abstract
This paper proposes a new scheme for the 2D-3D face recognition problem. Our proposed framework mainly consists of Restricted Boltzmann Machines (RBMs) and a correlation learning model. In the framework, a single-layer network based on RBMs is adopted to extract latent features over two different modalities. Furthermore, the latent hidden layer features of different models are projected to formulate a shared space based on correlation learning. Then several different correlation learning schemes are evaluated against the proposed scheme. We evaluate the advocated approach on a popular face dataset-FRGCV2.0. Experimental results demonstrate that the latent features extracted using RBMs are effective in improving the performance of correlation mapping for 2D-3D face recognition.
References
- Bengio, Y. (2009). Learning deep architectures for ai. Foundations and trends R in Machine Learning, 2(1):1- 127.
- Dhillon, P., Foster, D. P., and Ungar, L. H. (2011). Multiview learning of word embeddings via cca. In Advances in Neural Information Processing Systems, pages 199-207.
- Guo, G. and Wang, X. (2012). A study on human age estimation under facial expression changes. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 2547-2553. IEEE.
- Hardoon, D. R., Szedmak, S., and Shawe-Taylor, J. (2004). Canonical correlation analysis: An overview with application to learning methods. Neural Computation, 16(12):2639-2664.
- Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507.
- Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28(3/4):321-377.
- Huang, D., Ardabilian, M., Wang, Y., and Chen, L. (2010). Automatic asymmetric 3d-2d face recognition. In Pattern Recognition (ICPR), 2010 20th International Conference on, pages 1225-1228. IEEE.
- Huang, D., Ardabilian, M., Wang, Y., and Chen, L. (2012). Oriented gradient maps based automatic asymmetric 3d-2d face recognition. In Biometrics (ICB), 2012 5th IAPR International Conference on, pages 125-131. IEEE.
- Jain, A. K., Ross, A. A. A., and Nandakumar, K. (2011). Introduction to biometrics. Springer.
- Kim, T.-K., Wong, S.-F., and Cipolla, R. (2007). Tensor canonical correlation analysis for action classification. In Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on, pages 1-8. IEEE.
- Kumar, N., Berg, A. C., Belhumeur, P. N., and Nayar, S. K. (2009). Attribute and simile classifiers for face verification. In Computer Vision, 2009 IEEE 12th International Conference on, pages 365-372. IEEE.
- Li, A., Shan, S., Chen, X., and Gao, W. (2009). Maximizing intra-individual correlations for face recognition across pose differences. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 605-611. IEEE.
- Mohamed, A.-r., Dahl, G. E., and Hinton, G. (2012). Acoustic modeling using deep belief networks. Audio, Speech, and Language Processing, IEEE Transactions on, 20(1):14-22.
- Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., and Ng, A. (2011). Multimodal deep learning. In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages 689-696.
- Phillips, P. J., Flynn, P. J., Scruggs, T., Bowyer, K. W., Chang, J., Hoffman, K., Marques, J., Min, J., and Worek, W. (2005). Overview of the face recognition grand challenge. In Computer vision and pattern recognition, 2005. CVPR 2005. IEEE computer society conference on, volume 1, pages 947-954. IEEE.
- Rama, A., Tarres, F., Onofrio, D., and Tubaro, S. (2006). Mixed 2d-3d information for pose estimation and face recognition. In Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on, volume 2, pages II-II. IEEE.
- Riccio, D. and Dugelay, J.-L. (2005). Asymmetric 3d/2d processing: a novel approach for face recognition. In Image Analysis and Processing-ICIAP 2005, pages 986-993. Springer.
- Sargin, M. E., Yemez, Y., Erzin, E., and Tekalp, A. M. (2007). Audiovisual synchronization and fusion using canonical correlation analysis. Multimedia, IEEE Transactions on, 9(7):1396-1403.
- Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., and Blake, A. (2011). Real-time human pose recognition in parts from single depth images. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 1297-1304. IEEE.
- Slaney, M. and Covell, M. (2000). Facesync: A linear operator for measuring synchronization of video facial images and audio tracks. In NIPS, pages 814-820.
- Srivastava, N. and Salakhutdinov, R. (2012). Multimodal learning with deep boltzmann machines. In Advances in Neural Information Processing Systems 25, pages 2231-2239.
- Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduction, volume 1. Cambridge Univ Press.
- Vinokourov, A., Cristianini, N., and Shawe-taylor, J. S. (2002). Inferring a semantic representation of text via cross-language correlation analysis. In Advances in neural information processing systems, pages 1473- 1480.
- Wang, H., Klaser, A., Schmid, C., and Liu, C.-L. (2011). Action recognition by dense trajectories. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 3169-3176. IEEE.
- Wang, X., Ly, V., Guo, G., and Kambhamettu, C. (2013). A new approach for 2d-3d heterogeneous face recognition. In Multimedia (ISM), 2013 IEEE International Symposium on. IEEE.
- Xu, C., Li, S., Tan, T., and Quan, L. (2009). Automatic 3d face recognition from depth and intensity gabor features. Pattern Recognition, 42(9):1895-1905.
- Yang, W., Yi, D., Lei, Z., Sang, J., and Li, S. Z. (2008). 2d-3d face matching using cca. In Automatic Face & Gesture Recognition, 2008. FG'08. 8th IEEE International Conference on, pages 1-6. IEEE.
Paper Citation
in Harvard Style
Wang X., Ly V., Guo R. and Kambhamettu C. (2014). 2D-3D Face Recognition via Restricted Boltzmann Machines . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-004-8, pages 574-580. DOI: 10.5220/0004736505740580
in Bibtex Style
@conference{visapp14,
author={Xiaolong Wang and Vincent Ly and Rui Guo and Chandra Kambhamettu},
title={2D-3D Face Recognition via Restricted Boltzmann Machines},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={574-580},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004736505740580},
isbn={978-989-758-004-8},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014)
TI - 2D-3D Face Recognition via Restricted Boltzmann Machines
SN - 978-989-758-004-8
AU - Wang X.
AU - Ly V.
AU - Guo R.
AU - Kambhamettu C.
PY - 2014
SP - 574
EP - 580
DO - 10.5220/0004736505740580