Visualization of Remote Sensing Imagery by Sequential Dimensionality Reduction on Graphics Processing Unit

Safa A. Najim, Ik Soo Lim

2014

Abstract

This paper introduces a new technique called Sequential Dimensionality Reduction (SDR), to visualize remote sensing imagery. The DR methods are introduced to project directly the high dimensional dataset into a low dimension space. Although they work very well when original dimensions are small, their visualizations are not efficient enough with large input dimensions. Unlike DR, SDR redefines the problem of DR as a sequence of multiple dimensionality reduction problems, each of which reduces the dimensionality by a small amount. The SDR can be considered as a generalized idea which can be applied to any method, and the stochastic proximity embedding (SPE) method is chosen in this paper because its speed and efficiency compared to other methods. The superiority of SDR over DR is demonstrated experimentally. Moreover, as most DR methods also employ DR ideas in their projection, the performance of SDR and 20 DR methods are compared, and the superiority of the proposed method in both correlation and stress is shown. Graphics processing unit (GPU) is the best way to speed up the SDR method, where the speed of execution has been increased by 74 times in comparison to when it was run on CPU.

References

  1. Agrafiotis, D. K., Xu, H., Zhu, F., Bandyopadhyay, D., and Liu, P. (2010). Stochastic proximity embedding: Methods and applications. Molecular Informatics, 29:758-770.
  2. Ameer, P. M. and Jacob, L. (2012). Localization using stochastic proximity embedding for underwater acoustic sensor networks. In 2012 National Conference on Communications (NCC).
  3. AVIRIS (2013). http://aviris.jpl.nasa.gov/index.html.
  4. Bachmann, C. M., Ainsworth, T. L., and Fusina, R. A. (2005). Exploiting manifold geometry in hyperspectral imagery. IEEE transaction on geoscience and remote sensing, 43:441-454.
  5. Belkin, M. and Niyogi, P. (2002). Laplacian eigenmaps and spectral techniques for embedding and clustering. Advances in Neural Information Processing Systems, 14:585591.
  6. Blum, R. S. and Liu, Z. (2006). Multi-sensor Image Fusion and its Applications. Taylor & Francis Group.
  7. Borg, I. and Groenen, P. J. (1997). Modern Multidimensional Scaling : Theory and Applications. SpringerVerlag, NewYork.
  8. Bunte, K., Haase, S., Biehl, M., and Villmann, T. (2012). Stochastic neighbor embedding (sne) for dimension reduction and visualization using arbitrary divergences. Neurocomputing, 90:23-45.
  9. Darlington, R. B. (1999). Factor analysis. Technical report, Cornell University,.
  10. Demartines, P. and Hrault, J. (1997). Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets. IEEE Transactions on Neural Networks, 8:148-154.
  11. Donoho, D. L. and Grimes, C. (2005). Hessian eigenmaps: New locally linear embedding techniques for highdimensional data. In The National Academy of Sciences, 102(21):74267431.
  12. Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern Classification. Wiley Interscience Inc.
  13. He, X., Cai, D., Yan, S., and Zhang, H.-J. (2005). Neighborhood preserving embedding. In Tenth IEEE International Conference on Computer Vision (ICCV) (Volume:2 ).
  14. Jolliffe, I. (2002). Principal Component Analysis. Springer Verlag, New York, Inc.
  15. Kaski, S. and Peltonen, J. (2011). Dimensionality reduction for data visualization. IEEE signal processing magazine, 28:100-104.
  16. Lawrence, J., Arietta, S., Kazhdan, M., Lepage, D., and OHagan, C. (2011). A user-assisted approach to visualizing multidimensional images. IEEE Transaction on Visualization and Computer Graphics, 17(10):1487-1498.
  17. Lee, J. A., Lendasse, A., and Verleysen, M. (2004). Nonlinear projection with curvilinear distances: Isomap versus curvilinear distance analysis. Neurocomputing, 57:49-76.
  18. Lespinats, S. and Aupetit, M. (2011). Checkviz: Sanity check and topological clues for linear and non-linear mappings. Comput. Graph. Forum, 30:113-125.
  19. Maaten, L. V. D. and Hinton, G. (2008). Visualizing data using t-sne. Machine Learning Research, 9:2579-2605.
  20. Maaten, L. V. D., Postma, E., and Herik, H. V. D. (2009). Dimensionality reduction: A comparative review. Machine Learning Research, 10:1-41.
  21. Mignotte, M. (2012). A bicriteria-optimization-approachbased dimensionality-reduction model for the color display of hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing, 50:501-513.
  22. Mokbel, B., Lueks, W., Gisbrecht, A., and Hammera, B. (2013). Visualizing the quality of dimensionality reduction. Neuocomputing, 112:109-123.
  23. Peltonen, J. (2009). Visualization by linear projections as information retrieval. Advances in Self-Organizing Maps Lecture Notes in Computer Scienc, 5629:237- 245.
  24. Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. SCIENCE, 290:2323-2326.
  25. Sanders, J. and Kandrot, E. (2011). CUDA by example. Addison-Wesley Professional.
  26. Shawe-Taylor, J. and Cristianini, N. (2004). Kernel methods for pattern analysis. Cambridge University Press.
  27. Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transaction on Pattern Analysis and Machine Intelligence, 22:888-905.
  28. Smith, R. B. (2012). Introduction to Hyperspectral Imaging. MicroImages, Inc.
  29. Steyvers, M. (2002). Multidimensional scaling. Encyclopedia of Cognitive Science.
  30. Tenenbaum, J. B., de Silva, V., and Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science 290, 5500:2319-2323.
  31. Tipping, M. E. and Bishop, C. M. (1999). Mixtures of probabilistic principal component analyzers. Neural Computation, 61:611.
  32. Tyo, J. S., Konsolakis, A., Diersen, D. I., and Olsen, R. C. (2003). Principal-components-based display strategy for spectral imagery. IEEE transactions on geoscience and remote sensing, 41:708718.
  33. Venna, J., Peltonen, J., Nybo, K., Aidos, H., and Kaski, S. (2010). Information retrieval perspective to nonlinear dimensionality reduction for data visualization. J. Mach. Learn. Res, 11:451-490.
  34. Weinberger, K. Q. and Saul, L. K. (2006). An introduction to nonlinear dimensionality reduction by maximum variance unfolding. In Proceedings of the National Conference on Artificial Intelligence, Boston, MA.
  35. Zhang, T., Yang, J., Zhao, D., and Ge, X. (2007). Linear local tangent space alignment and application to face recognition. Neurocomputing, 70:1547-1553.
  36. Zhang, Z. and Zha, H. (2004). Principal manifolds and nonlinear dimensionality reduction via local tangent space alignment. SIAM Journal of Scientific Computing, 26:313-338.
  37. Zhi, R. and Ruan, Q. (2008). Fractional supervised orthogonal local linear projection. In CISP 7808. Congress on (Volume:2 ) Image and Signal Processing.
Download


Paper Citation


in Harvard Style

Najim S. and Lim I. (2014). Visualization of Remote Sensing Imagery by Sequential Dimensionality Reduction on Graphics Processing Unit . In Proceedings of the 5th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2014) ISBN 978-989-758-005-5, pages 71-79. DOI: 10.5220/0004737500710079


in Bibtex Style

@conference{ivapp14,
author={Safa A. Najim and Ik Soo Lim},
title={Visualization of Remote Sensing Imagery by Sequential Dimensionality Reduction on Graphics Processing Unit},
booktitle={Proceedings of the 5th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2014)},
year={2014},
pages={71-79},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004737500710079},
isbn={978-989-758-005-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2014)
TI - Visualization of Remote Sensing Imagery by Sequential Dimensionality Reduction on Graphics Processing Unit
SN - 978-989-758-005-5
AU - Najim S.
AU - Lim I.
PY - 2014
SP - 71
EP - 79
DO - 10.5220/0004737500710079