Training Optimum-Path Forest on Graphics Processing Units
Adriana S. Iwashita, Marcos V. T. Romero, Alexandro Baldassin, Kelton A. P. Costa, Joao P. Papa
2014
Abstract
In this paper, we presented a Graphics Processing Unit (GPU)-based training algorithm for Optimum-Path Forest (OPF) classifier. The proposed approach employs the idea of a vector-matrix multiplication to speed up both traditional OPF training algorithm and a recently proposed Central Processing Unit (CPU)-based OPF training algorithm. Experiments in several public datasets have showed the efficiency of the proposed approach, which demonstrated to be up to 14 times faster for some datasets. To the best of our knowledge, this is the first GPU-based implementation for OPF training algorithm.
References
- Allène, C., Audibert, J. Y., Couprie, M., Cousty, J., and Keriven, R. (2007). Some links between min-cuts, optimal spanning forests and watersheds. In Proceedings of the International Symposium on Mathematical Morphology, pages 253-264. MCT/INPE.
- Catanzaro, B., Sundaram, N., and Keutzer, K. (2008). Fast support vector machine training and classification on graphics processors. In Proceedings of the 25th international conference on Machine learning, pages 104- 111, New York, NY, USA. ACM.
- Do, T.-N., Nguyen, V.-H., and Poulet, F. (2008). Speed up svm algorithm for massive classification tasks. In Proceedings of the 4th international conference on Advanced Data Mining and Applications, pages 147- 157, Berlin, Heidelberg. Springer-Verlag.
- Duda, R. O., Hart, P. E., and Stork, D. G. (2000). Pattern Classification (2nd Edition). Wiley-Interscience.
- Falca˜o, A., Stolfi, J., and Lotufo, R. (2004). The image foresting transform theory, algorithms, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(1):19-29.
- Frank, A. and Asuncion, A. (2013). UCI machine learning repository.
- Fujimoto, N. (2008). Faster matrix-vector multiplication on geforce 8800gtx. In Proceedings of the IEEE International Symposium on Parallel and Distributed Processing, pages 1-8.
- Hoberock, J. and Bell, N. (2010). Thrust: Parallel Template Library. Available http://www.meganewtons.com/, Version 1.3.0.
- Iwashita, A. S., Papa, J. P., Falca˜o, A. X., Lotufo, R., Oliveira, V. M., Albuquerque, V. H. C., and Tavares, J. M. R. S. (2012). Speeding up optimum-path forest training by path-cost propagation. In Proceedings of the XXI International Conference on Pattern Recognition, pages 1233-1236.
- Jang, H., Park, A., and Jung, K. (2008). Neural network implementation using cuda and openmp. In DICTA 7808: Proceedings of the 2008 Digital Image Computing: Techniques and Applications, pages 155-161, Washington, DC, USA. IEEE Computer Society.
- Kaewpijit, S., Moigne, J., and El-Ghazawi, T. (2003). Automatic reduction of hyperspectral imagery using wavelet spectral analysis. IEEE Transactions on Geoscience and Remote Sensing, 41(4):863-871.
- King, R. D., Feng, C., and Sutherland, A. (1995). Statlog: Comparison of classification algorithms on large real-world problems. Applied Artificial Intelligence, 9(3):289-333.
- Landgrebe, D. (2005). Signal Theory Methods in Multispectral Remote Sensing. Wiley, Newark, NJ.
- LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1988). Gradient-based learning applied to document recognition. Available at http://yann.lecun.com/exdb/mnist/.
- Papa, J. P., Falca˜o, A. X., Albuquerque, V. H. C., and Tavares, J. M. R. S. (2012). Efficient supervised optimum-path forest classification for large datasets. Pattern Recognition, 45(1):512-520.
- Papa, J. P., Falca˜o, A. X., and Suzuki, C. T. N. (2009a). Supervised pattern classification based on optimumpath forest. International Journal of Imaging Systems and Technology, 19(2):120-131.
- Papa, J. P., S., C. T. N., and Falca˜o, A. X. (2009b). LibOPF: A library for the design of optimum-path forest classifiers. Software version 2.0 available at http://www.ic.unicamp.br/ afalcao/LibOPF.
Paper Citation
in Harvard Style
S. Iwashita A., V. T. Romero M., Baldassin A., A. P. Costa K. and P. Papa J. (2014). Training Optimum-Path Forest on Graphics Processing Units . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-004-8, pages 581-588. DOI: 10.5220/0004737805810588
in Bibtex Style
@conference{visapp14,
author={Adriana S. Iwashita and Marcos V. T. Romero and Alexandro Baldassin and Kelton A. P. Costa and Joao P. Papa},
title={Training Optimum-Path Forest on Graphics Processing Units},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={581-588},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004737805810588},
isbn={978-989-758-004-8},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014)
TI - Training Optimum-Path Forest on Graphics Processing Units
SN - 978-989-758-004-8
AU - S. Iwashita A.
AU - V. T. Romero M.
AU - Baldassin A.
AU - A. P. Costa K.
AU - P. Papa J.
PY - 2014
SP - 581
EP - 588
DO - 10.5220/0004737805810588