Statistical Features for Image Retrieval - A Quantitative Comparison

Cecilia Di Ruberto, Giuseppe Fodde

2014

Abstract

In this paper we present a comparison between various statistical descriptors and analyze their goodness in classifying textural images. The chosen statistical descriptors have been proposed by Tamura, Battiato and Haralick. In this work we also test a combination of the three descriptors for texture analysis. The databases used in our study are the well-known Brodatz’s album and DDSM(Heath et al., 1998). The computed features are classified using the Naive Bayes, the RBF, the KNN, the Random Forest and Random Tree models. The results obtained from this study show that we can achieve a high classification accuracy if the descriptors are used all together.

References

  1. Battiato, S., Gallo, G., and Nicotra, S. (2003). Perceptive visual texture classification and retrieval. In Image Analysis and Processing, 2003.Proceedings. 12th International Conference on, pages 524-529.
  2. Brodatz, P. (1966). Textures, a photographic album for artists and designers. New York:Dover.
  3. Broek, E. and Rikxoort, E. (2005). Parallel-sequential texture analysis. In Pattern Recognition and Image Analysis, volume 3687 of Lecture Notes in Computer Science, pages 532-541. Springer Berlin Heidelberg.
  4. Chang, C.-Y. and Fu, S.-Y. (2006). Image classification using a module rbf neural network. In Innovative Computing, Information and Control, 2006. ICICIC 7806. First International Conference on, volume 2, pages 270-273.
  5. Deselaers, T., Keysers, D., and Ney, H. (2004). Features for image retrieval - a quantitative comparison. In In DAGM 2004, Pattern Recognition, 26th DAGM Symposium, pages 228-236.
  6. Haralick, R. (1979). Statistical and structural approaches to texture. Proceedings of the IEEE.
  7. Hayes K.C., Shah A.N., R. A. (1974). Texture coarseness: Further experiments. Systems, Man and Cybernetics, IEEE Transactions on, SMC-4(5):467-472.
  8. Heath, M., Bowyer, K., Kopans, D., Kegelmeyer, P., J., Moore, R., Chang, K., and Munishkumaran, S. (1998). Current status of the digital database for screening mammography. In Karssemeijer, N., Thijssen, M., Hendriks, J., and Erning, L., editors, Digital Mammography, volume 13 of Computational Imaging and Vision, pages 457-460. Springer Netherlands.
  9. Howarth, P. and Rger, S. (2004). S.: Evaluation of texture features for content-based image retrieval. In In: Proceedings of the International Conference on Image and Video Retrieval, Springer-Verlag.
  10. Jian, M., Liu, L., and Guo, F. (2009). Texture image classification using perceptual texture features and gabor wavelet features. In Information Processing, 2009. APCIP 2009. Asia-Pacific Conference on, volume 2, pages 55-58.
  11. Julesz, B. (1981). Textons, the elements of texture perception, and their interactions. Nature, 290(5802):91-97.
  12. Landy, M. S. and Graham, N. (2004). Visual perception of texture. In THE VISUAL NEUROSCIENCES, pages 1106-1118. MIT Press.
  13. Prasad, B. G. and Krishna, A. N. (2011). Statistical texture feature-based retrieval and performance evaluation of ct brain images. In Electronics Computer Technology (ICECT), 2011 3rd International Conference on, volume 2, pages 289-293.
  14. Rosenfeld, A. (1975). Visual texture analysis: An overview. Technical report, DTIC Document.
  15. Tamura, H., Mori, S., and Yamawaki, T. (1978). Textural features corresponding to visual perception. Systems, Man and Cybernetics, IEEE Transactions on, 8(6):460-473.
  16. Umarani, C. and Radhakrishnan, S. (2007). Combined statistical and structural approach for unsupervised texture classification. ICGST International Journal on Graphics, Vision and Image Processing, 07:31-36.
  17. van den Broek, E. L. and Rikxoort, E. M. (2004). Evaluation of color representation for texture analisys. In Verbrugge, R., Taatgen, N., and Schomaker, L., editors, Prooceedings of the 16th Belgian Dutch Artificial Intelligence Conference (BNAIC 2004), Groningen, The Netherlands, pages 35-42.
  18. van den Broek, E. L., Rikxoort, E. M., Kok, T., and Schuten, T. E. (2006). M-hints: Mimicking humans in texture sorting. In Human Vision and Electronic Imaging XI, volume 6057, pages 332-343. SPIE, the International Society for Optical Engineering.
  19. van Rikxoort, E. M., van den Broek, E. L., and Schouten, T. E. (2005). Mimicking human texture classification. In Proceedings of Human Vision and Electronic Imaging X, pages 215-226.
Download


Paper Citation


in Harvard Style

Di Ruberto C. and Fodde G. (2014). Statistical Features for Image Retrieval - A Quantitative Comparison . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-003-1, pages 610-617. DOI: 10.5220/0004741006100617


in Bibtex Style

@conference{visapp14,
author={Cecilia Di Ruberto and Giuseppe Fodde},
title={Statistical Features for Image Retrieval - A Quantitative Comparison},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={610-617},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004741006100617},
isbn={978-989-758-003-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2014)
TI - Statistical Features for Image Retrieval - A Quantitative Comparison
SN - 978-989-758-003-1
AU - Di Ruberto C.
AU - Fodde G.
PY - 2014
SP - 610
EP - 617
DO - 10.5220/0004741006100617