Detecting Events in Crowded Scenes using Tracklet Plots

Pau Climent-Pérez, Alexandre Mauduit, Dorothy N. Monekosso, Paolo Remagnino

2014

Abstract

The main contribution of this paper is a compact representation of the ‘short tracks’ or tracklets present in a time window of a given video input, which allows to analyse and detect different crowd events. To proceed, first, tracklets are extracted from a time window using a particle filter multi-target tracker. After noise removal, the tracklets are plotted into a square image by normalising their lengths to the size of the image. Different histograms are then applied to this compact representation. Thus, different events in a crowd are detected via a Bag-of-words modelling. Novel video sequences, can then be analysed to detect whether an abnormal or chaotic situation is present. The whole algorithm is tested with our own dataset, also introduced in the paper.

References

  1. Ballan, L., Bertini, M., Del Bimbo, A., Seidenari, L., and Serra, G. (2011). Event detection and recognition for semantic annotation of video. Multimedia Tools and Applications, 51(1):279-302.
  2. Bobick, A. and Davis, J. (2001). The recognition of human movement using temporal templates. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 23(3):257-267.
  3. Candamo, J., Shreve, M., Goldgof, D. B., Sapper, D. B., and Kasturi, R. (2010). Understanding Transit Scenes: A Survey on Human Behavior-Recognition Algorithms. IEEE Transactions on Transportation Systems, 11(1):206-224.
  4. Davies, A., Yin, J., and Velastin, S. (1995). Crowd monitoring using image processing. Electronics & Communication Engineering Journal, 7(1):34-47.
  5. Dee, H. M. and Caplier, A. (2010). Crowd behaviour analysis using histograms of motion direction. In Image Processing (ICIP), 2010 17th IEEE International Conference on, pages 1545-1548. IEEE.
  6. Garate, C., Bilinsky, P., and Bremond, F. (2009). Crowd event recognition using hog tracker. In Performance Evaluation of Tracking and Surveillance (PETSWinter), 2009 Twelfth IEEE International Workshop on, pages 1-6.
  7. Hu, M., Ali, S., and Shah, M. (2008). Detecting global motion patterns in complex videos. In Pattern Recognition, 2008. ICPR 2008. 19th International Conference on, pages 1-5. IEEE.
  8. Jacques Junior, J., Raupp Musse, S., and Jung, C. (2010). Crowd analysis using computer vision techniques. Signal Processing Magazine, IEEE, 27(5):66-77.
  9. Kwon, J. and Lee, K. (2013). Wang-Landau Monte Carlobased Tracking Methods for Abrupt Motions. Transactions on Pattern Analysis and Machine Intelligence, 35(4):1011-1024.
  10. Lasdas, V., Timofte, R., and Van Gool, L. (2012). Nonparametric motion-priors for flow understanding. In Applications of Computer Vision (WACV), 2012 IEEE Workshop on, pages 417-424. IEEE.
  11. Pérez, P., Hue, C., Vermaak, J., and Gangnet, M. (2002). Color-Based Probabilistic Tracking. In European Conference on Computer Vision 2002, pages 661-675.
  12. Sivic, J. and Zisserman, A. (2003). Video google: a text retrieval approach to object matching in videos. In Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on, pages 1470-1477 vol.2.
  13. Thida, M., Yong, Y. L., Climent-Pérez, P., How-lung, E., and Remagnino, P. (2013). A Literature Review on Video Analytics of Crowded Scenes. In Cavallaro, A. and Atrey, P. K., editors, Intelligent Multimedia Surveillance: Current Trends and Research, pages 1- 23. Springer (in press).
  14. Zhan, B., Monekosso, D. N., Remagnino, P., Velastin, S. A., and Xu, L.-Q. (2008). Crowd analysis: a survey. Machine Vision and Applications, 19(5-6):345-357.
Download


Paper Citation


in Harvard Style

Climent-Pérez P., Mauduit A., N. Monekosso D. and Remagnino P. (2014). Detecting Events in Crowded Scenes using Tracklet Plots . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-004-8, pages 174-181. DOI: 10.5220/0004742301740181


in Bibtex Style

@conference{visapp14,
author={Pau Climent-Pérez and Alexandre Mauduit and Dorothy N. Monekosso and Paolo Remagnino},
title={Detecting Events in Crowded Scenes using Tracklet Plots},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={174-181},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004742301740181},
isbn={978-989-758-004-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2014)
TI - Detecting Events in Crowded Scenes using Tracklet Plots
SN - 978-989-758-004-8
AU - Climent-Pérez P.
AU - Mauduit A.
AU - N. Monekosso D.
AU - Remagnino P.
PY - 2014
SP - 174
EP - 181
DO - 10.5220/0004742301740181