Key-point Detection with Multi-layer Center-surround Inhibition

Foti Coleca, Sabrina Zîrnovean, Thomas Käster, Thomas Martinetz, Erhardt Barth

2014

Abstract

We present a biologically inspired algorithm for key-point detection based on multi-layer and nonlinear centersurround inhibition. A Bag-of-Visual-Words framework is used to evaluate the performance of the detector on the Oxford III-T Pet Dataset for pet recognition. The results demonstrate an increased performance of our algorithm compared to the SIFT key-point detector. We further improve the recognition rate by separately training codebooks for the ON- and OFF-type key points. The results show that our key-point detection algorithms outperform the SIFT detector by having a lower recognition-error rate over a whole range of different key-point densities. Randomly selected key-points are also outperformed.

References

  1. Barth, E. and Zetzsche, C. (1998). Endstopped operators based on iterated nonlinear center-surround inhibition. In Human Vision and Electronic Imaging III, volume 3299 of Proc. SPIE, pages 67-78, Bellingham, WA.
  2. Bengio, Y. (2009). Learning deep architectures for ai. Foundations and trends R in Machine Learning, 2(1):1- 127.
  3. Cires¸an, D. C., Meier, U., Gambardella, L. M., and Schmidhuber, J. (2010). Deep, big, simple neural nets for handwritten digit recognition. Neural computation, 22(12):3207-3220.
  4. Csurka, G., Dance, C., Fan, L., Willamowski, J., and Bray, C. (2004). Visual categorization with bags of keypoints. In Workshop on statistical learning in computer vision, ECCV, volume 1, page 22.
  5. Hinton, G. E. (2007). Learning multiple layers of representation. Trends in cognitive sciences, 11(10):428-434.
  6. Indiveri, G., Linares-Barranco, B., Hamilton, T., van Schaik, A., Etienne-Cummings, R., Delbruck, T., Liu, S.-C., Dudek, P., Häfliger, P., Renaud, S., Schemmel, J., Cauwenberghs, G., Arthur, J., Hynna, K., Folowosele, F., Saighi, S., Serrano-Gotarredona, T., Wijekoon, J., Wang, Y., and Boahen, K. (2011). Neuromorphic silicon neuron circuits. Frontiers in Neuroscience, 5:1-23.
  7. Lowe, D. G. (1999). Object recognition from local scaleinvariant features. In Computer vision, 1999. The proceedings of the seventh IEEE international conference on, volume 2, pages 1150-1157. Ieee.
  8. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., and Van Gool, L. (2005). A comparison of affine region detectors. International journal of computer vision, 65(1-2):43- 72.
  9. Mota, C. and Barth, E. (2000). On the uniqueness of curvature features. In Dynamische Perzeption, volume 9 of Proceedings in Artificial Intelligence, pages 175-178, Köln. Infix Verlag.
  10. Nowak, E., Jurie, F., and Triggs, B. (2006). Sampling strategies for bag-of-features image classification. In Computer Vision-ECCV 2006, pages 490-503. Springer.
  11. Parkhi, O. M., Vedaldi, A., Zisserman, A., and Jawahar, C. (2012). Cats and dogs. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 3498-3505. IEEE.
  12. Vedaldi, A. and Fulkerson, B. (2010). Vlfeat: An open and portable library of computer vision algorithms. In Proceedings of the international conference on Multimedia, pages 1469-1472. ACM.
  13. Vig, E., Dorr, M., and Cox, D. (2012a). Saliency-based selection of sparse descriptors for action recognition. In Image Processing (ICIP), 2012 19th IEEE International Conference on, pages 1405 - 1408.
  14. Vig, E., Dorr, M., Martinetz, T., and Barth, E. (2012b). Intrinsic dimensionality predicts the saliency of natural dynamic scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(6):1080-1091.
  15. Zetzsche, C. and Barth, E. (1990). Fundamental limits of linear filters in the visual processing of twodimensional signals. Vision Research, 30:1111-1117.
  16. Zetzsche, C. and Nuding, U. (2007). Nonlinear encoding in multilayer LNL systems optimized for the representation of natural images. In Human Vision and Electronic Imaging XII, volume 6492 of Proc. SPIE, pages 649204-649204-22.
Download


Paper Citation


in Harvard Style

Coleca F., Zîrnovean S., Käster T., Martinetz T. and Barth E. (2014). Key-point Detection with Multi-layer Center-surround Inhibition . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-003-1, pages 386-393. DOI: 10.5220/0004743103860393


in Bibtex Style

@conference{visapp14,
author={Foti Coleca and Sabrina Zîrnovean and Thomas Käster and Thomas Martinetz and Erhardt Barth},
title={Key-point Detection with Multi-layer Center-surround Inhibition},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={386-393},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004743103860393},
isbn={978-989-758-003-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2014)
TI - Key-point Detection with Multi-layer Center-surround Inhibition
SN - 978-989-758-003-1
AU - Coleca F.
AU - Zîrnovean S.
AU - Käster T.
AU - Martinetz T.
AU - Barth E.
PY - 2014
SP - 386
EP - 393
DO - 10.5220/0004743103860393