Rule-based Classification of Visual Field Defects
Enkelejda Kasneci, Gjergji Kasneci, Ulrich Schiefer, Wolfgang Rosenstiel
2014
Abstract
The automated recognition of the visual field defect type from results of visual field testing is crucial for the adequate diagnosis and treatment of the underlying disease of the visual system. This paper presents a reliable rule-based classifier that emulates the decision strategies of expert ophthalmologists based on a two-level approach that combines methods of unsupervised learning.
References
- Aulhorn, E. and Karmeyer, H. (1977). Frequency distribution in early glaucomatous visual field defects. Documenta Ophthalmologica Proceedings Series, 14:75- 83.
- Baldi, P., Brunak, S., Chauvin, Y., Andersen, C. A. F., and Nielsen, H. (2000). Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics, 16(5):412-424.
- Bengtsson, B., Bizios, D., and Heijl, A. (2005). Effects of input data on the performance of a neural network in distinguishing normal and glaucomatous visual fields. Investigative Ophthalmology & Visual Science, 46(10):3730-3736.
- Bizios, D., Heijl, A., and Bengtsson, B. (2007). Trained artificial neural network for glaucoma diagnosis using visual field data: a comparison with conventional algorithms. Journal of Glaucoma, 16(1):20-28.
- Boden, C., Chan, K., Sample, P. A., Hao, J., Lee, T., Zangwill, L. M., Weinreb, R. N., and Goldbaum, M. H. (2007). Assessing Visual Field Clustering Schemes Using Machine Learning Classifiers in Standard Perimetry. Investigative Ophthalmology & Visual Science, 48(12):5582-5590.
- Brigatti, L., Nouri-Mahdavi, K., Weitzmann, M., and Caprioli, J. (1997). Automatic Detection of Glaucomatous Visual Field Progression with Neural Networks. Archives of Ophthalmology, 115(6):725-728.
- Duda, R. O., Hart, P. E., and Stork, D. G. (2000). Pattern Classification (2nd Edition). Wiley-Interscience, 2 edition.
- Fink, W. (2004). Neural attractor network for application in visual field data classification. Physics in Medicine and Biology, 49(13):2799-2809.
- Goldbaum, M. H., Jang, G. J., Bowd, C., Hao, J., Zangwill, L. M., Liebmann, J., Girkin, C., Jung, T. P., Weinreb, R. N., and Sample, P. A. (2009). Patterns of glaucomatous visual field loss in SITA fields automatically identified using independent component analysis. Transactions of the Americal Ophthalmological Society, 107:136-144.
- Goldbaum, M. H., Sample, P. A., Chan, K., Williams, J., Lee, T. W., Blumenthal, E., Girkin, C. A., Zangwill, L. M., Bowd, C., Sejnowski, T., and Weinreb, R. N. (2002). Comparing machine learning classifiers for diagnosing glaucoma from standard automated perimetry. Investigative Ophthalmology & Visual Science, 43(1):162-169.
- Goldbaum, M. H., Sample, P. A., White, H., Colt, B., Raphaelian, P., Fechtner, R. D., and Weinreb, R. N. (1994). Interpretation of automated perimetry for glaucoma by neural network. Investigative Ophthalmololgy & Visual Science, 35(9):3362-3373.
- Henson, D. B., Spenceley, S. E., and Bull, D. R. (1996). Spatial classification of glaucomatous visual field loss. British Journal of Ophthalmology, 80(6):526- 531.
- Henson, D. B., Spenceley, S. E., and Bull, D. R. (1997). Artificial neural network analysis of noisy visual field data in glaucoma. Artificial Intelligence in Medicine, 10(2):99-113.
- Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data clustering: a review. ACM Computing Surveys, 31(3):264-323.
- Jürgens, C., Koch, T., Burth, R., Schiefer, U., and Zell, A. (2001). Classification of perimetric results and reduction of number of test locations using artificial neural networks [arvo abstract nr. 4539]. Investigative Ophthalmology & Visual Science, 42(4):846.
- Kaski, S. (1997). Data exploration using self-organizing maps. In Acta Polytechnica Scandinavica: Mathematics, Computing and Management in Engineering Series No 82.
- Keating, D., Mutlukan, E., Evans, A., McGarvie, J., and Damato, B. (1993). A back propagation neural network for the classification of visual field data. Physics in Medicine and Biology, 38(9):1263.
- Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9):1464-1480.
- Mangiameli, P., Chen, S. K., and West, D. (1996). A comparison of som neural network and hierarchical clustering methods. European Journal of Operational Research, 93(2):402-417.
- Mutlukan, E. and Keating, D. (1994). Visual field interpretation with a personal computer based neural network. Eye, 8(3):321-323.
- Nevalainen, J., Krapp, E., Paetzold, J., Mildenberger, I., Besch, D., Vonthein, R., Keltner, J. L., Johnson, C. A., and Schiefer, U. (2007). Visual field defects in acute optic neuritis - distribution of different types of defect pattern, assessed with threshold-related supraliminal perimetry, ensuring high spatial resolution. Graefe's Arch Clin Exp Ophthalmol, 246(4):599-607.
- Nouri-Mahdavi, K., Nassiri, N., Giangiacomo, A., and Caprioli, J. (2011). Detection of visual field progression in glaucoma with standard achromatic perimetry: A review and practical implications. Graefe's Archive for Clinical and Experimental Ophthalmology, 249(11):1593-1616.
- Tafaj, E., Dietzsch, J., Bogdan, M., Schiefer, U., and Rosenstiel, W. (2011a). Reliable classificatin of visual field defects in automated perimetry using clustering. In Proceedings of the 8th IASTED International Conference on Biomedical Engineering, BIOMED 7811.
- Tafaj, E., Hempel, S., Heister, M., Aehling, K., Schaeffel, F., Dietzsch, J., Rosenstiel, W., and Schiefer, U. (2013). A New Method for Assessing the Exploratory Field of View (EFOV). In Stacey, D., Sol-Casals, J., Fred, A. L. N., and Gamboa, H., editors, HEALTHINF 2012, pages 5-11. SciTePress.
- Tafaj, E., Kasneci, G., Rosenstiel, W., and Bogdan, M. (2012). Bayesian online clustering of eye movement data. In Proceedings of the Symposium on Eye Tracking Research and Applications, ETRA 7812, pages 285-288, New York, NY, USA. ACM.
- Tafaj, E., Kübler, T., Peter, J., Schiefer, U., Bogdan, M., and Rosenstiel, W. (2011b). Vishnoo - an opensource software for vision research. In Proceedings of the 24th IEEE International Symposium on ComputerBased Medical Systems, CBMS' 11, pages 1-6. IEEE.
- Tan, P. N., Steinbach, M., and Kumar, V. (2005). Introduction to Data Mining. Addison Wesley.
Paper Citation
in Harvard Style
Kasneci E., Kasneci G., Schiefer U. and Rosenstiel W. (2014). Rule-based Classification of Visual Field Defects . In Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2014) ISBN 978-989-758-010-9, pages 34-42. DOI: 10.5220/0004746200340042
in Bibtex Style
@conference{healthinf14,
author={Enkelejda Kasneci and Gjergji Kasneci and Ulrich Schiefer and Wolfgang Rosenstiel},
title={Rule-based Classification of Visual Field Defects},
booktitle={Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2014)},
year={2014},
pages={34-42},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004746200340042},
isbn={978-989-758-010-9},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2014)
TI - Rule-based Classification of Visual Field Defects
SN - 978-989-758-010-9
AU - Kasneci E.
AU - Kasneci G.
AU - Schiefer U.
AU - Rosenstiel W.
PY - 2014
SP - 34
EP - 42
DO - 10.5220/0004746200340042