A Framework for 3D Object Identification and Tracking
Georgios Chliveros, Rui P. Figueiredo, Plinio Moreno, Maria Pateraki, Alexandre Bernardino, Jose Santos-Victor, Panos Trahanias
2014
Abstract
In this paper we present a framework for the estimation of the pose of an object in 3D space: from the detection and subsequent recognition from a 3D point-cloud, to tracking in the 2D camera plane. The detection process proposes a way to remove redundant features, which leads to significant computational savings without affecting identification performance. The tracking process introduces a method that is less sensitive to outliers and is able to perform in soft real-time. We present preliminary results that illustrate the effectiveness of the approach both in terms of accuracy and computational speed.
References
- Azad, P., Münch, D., Asfour, T., and Dillmann, R. (2011). 6-DoF model-based tracking of arbitrarily shaped 3D objects. In IEEE Int. Conf. on Robotics and Automation, pages 5204-5209.
- Baltzakis, H. and Argyros, A. (2009). Propagation of pixel hypotheses for multiple objects tracking. In Advances in Visual Computing, volume 5876 of Lecture Notes in Computer Science, pages 140-149.
- Chetverikov, D., Stepanov, D., , and Krsek, P. (2005). Robust euclidean alignment of 3D point sets: the trimmed iterative closest point algorithm. Image and Vision Computing, 23:299-309.
- Chliveros, G., Pateraki, M., and Trahanias, P. (2013). Robust multi-hypothesis 3d object pose tracking. In Computer Vision Systems, volume 7963 of Lecture Notes in Computer Science, pages 234-243.
- Choi, C. and Christensen, H. I. (2012). Robust 3D visual tracking using particle filtering on the special Euclidean group: A combined approach of keypoint and edge features. The International Journal of Robotics Research, 31(4):498-519.
- Ciocarlie, M. Household objects database. accessed 19- July-2012.
- Drost, B., Ulrich, M., Navab, N., and Ilic, S. (2010). Model globally, match locally: Efficient and robust 3d object recognition. IEEE Transactions on Computer Vision and Pattern Recognition (CVPR), pages 998 - 1005.
- Figueiredo, R., Moreno, P., and Bernardino, A. (2013). Fast 3d object recognition of rotationally symmetric objects. In Pattern Recognition and Image Analysis, volume 7887 of Lecture Notes in Computer Science, pages 125-132.
- Fitzgibbon, A. (2003). 3D point sets. 21(13):1145-1153.
- Robust registration of 2D and Image and Vision Computing, Franklin, W. (2006). Nearest point query on 184,088,599 points with a uniform grid. Technical report, Rensselaer Polytechnic Institute, USA.
- Harris, C. (1992). Tracking with rigid objects. MIT press.
- Johnson, A. E. and Hebert, M. (1999). Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 433-449.
- Koller, D., Daniilidis, K., and Nagel, H. (1993). Modelbased object tracking in monocular image sequences of road traffic scenes. International Journal of Computer Vision, 10:257-281.
- Lourakis, M. (2010). Sparse non-linear least squares optimization for geometric vision. In European Conference on Computer Vision, pages 43-56.
- Mian, A. S., Bennamoun, M., and Owens, R. (2006). Threedimensional model-based object recognition and segmentation in cluttered scenes. IEEE Transactions on Pattern Anal. Mach. Intell, 28:1584-1601.
- Muja, M. and Lowe, D. G. (2009). Fast approximate nearest neighbors with automatic algorithm configuration. In Int. Conf. on Computer Vision Theory and Applications (VISAPP), pages 331-340.
- Pateraki, M., Sigalas, M., Chliveros, G., and Trahanias, P. (2013). Visual human-robot communication in social settings. In IEEE Int. Conf. on Robotics and Automation.
- Puppili, M. and Calway, A. (2006). Real time camera tracking using known 3D models and a particle filter. In IEEE Int. Conf. on Pattern Recognition.
- Rousseeuw, P. J. (1984). Least median of squares regression. Journal of the American Statistical Association, 79(388):871-880.
- Wahl, E., Hillenbrand, U., and Hirzinger, G. (2003). Surfletpair-relation histograms: A statistical 3D-shape representation for rapid classification. 3D Digital Imaging and Modeling, International Conference on, page 474.
Paper Citation
in Harvard Style
Chliveros G., P. Figueiredo R., Moreno P., Pateraki M., Bernardino A., Santos-Victor J. and Trahanias P. (2014). A Framework for 3D Object Identification and Tracking . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014) ISBN 978-989-758-009-3, pages 672-677. DOI: 10.5220/0004751506720677
in Bibtex Style
@conference{visapp14,
author={Georgios Chliveros and Rui P. Figueiredo and Plinio Moreno and Maria Pateraki and Alexandre Bernardino and Jose Santos-Victor and Panos Trahanias},
title={A Framework for 3D Object Identification and Tracking},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014)},
year={2014},
pages={672-677},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004751506720677},
isbn={978-989-758-009-3},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2014)
TI - A Framework for 3D Object Identification and Tracking
SN - 978-989-758-009-3
AU - Chliveros G.
AU - P. Figueiredo R.
AU - Moreno P.
AU - Pateraki M.
AU - Bernardino A.
AU - Santos-Victor J.
AU - Trahanias P.
PY - 2014
SP - 672
EP - 677
DO - 10.5220/0004751506720677