Multiple Segmentation of Image Stacks
Jonathan Smets, Manfred Jaeger
2014
Abstract
We propose a method for the simultaneous construction of multiple image segmentations by combining a recently proposed “convolution of mixtures of Gaussians” model with a multi-layer hidden Markov random field structure. The resulting method constructs for a single image several, alternative segmentations that capture different structural elements of the image. We also apply the method to collections of images with identical pixel dimensions, which we call image stacks. Here it turns out that the method is able to both identify groups of similar images in the stack, and to provide segmentations that represent the main structures in each group.
References
- Boykov, Y. and Kolmogorov, V. (2004). An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(9):1124-1137.
- Boykov, Y., Veksler, O., and Zabih, R. (2001). Fast approximate energy minimization via graph cuts. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 23(11):1222-1239.
- Chen, S., Cao, L., Wang, Y., Liu, J., and Tang, X. (2010). Image segmentation by map-ml estimations. Image Processing, IEEE Transactions on, 19(9):2254-2264.
- Cui, Y., Fern, X., and Dy, J. (2007). Non-redundant multiview clustering via orthogonalization. In Proceedings of Seventh IEEE International Conference on DataMining (ICDM 2007), pages 133 - 142.
- Ghahramani, Z. and Jordan, M. (1997). Factorial hidden Markov models. Machine Learning, 29(2-3):245- 273.
- Hoiem, D., Efros, A., and Hebert, M. (2005). Geometric context from a single image. In Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, volume 1, pages 654-661 Vol. 1.
- Jaeger, M., Lyager, S. P., Vandborg, M. W., and Wohlgemuth, T. (2011). Factorial clustering with an application to plant distribution data. In Proceedings of the 2nd MultiClust Workshop: Discovering, Summarizing and Using Multiple Clusterings, pages 31-42. Online proceedings http://dme.rwthaachen.de/en/MultiClust2011.
- Jain, P., Meka, R., and Dhillon, I. S. (2008). Simultaneous unsupervised learning of disparate clusterings. Statistical Analysis and Data Mining, 1(3):195-210.
- Kato, Z., Pong, T.-C., and Qiang, S. G. (2003). Unsupervised segmentation of color textured images using a multilayer mrf model. In Proceedings or the IEEE International Conference on Image Processing (ICIP 2003), volume 1, pages 961-964. IEEE.
- Kim, J. and Zabih, R. (2002). Factorial Markov random fields. In Heyden, A., Sparr, G., Nielsen, M., and Johansen, P., editors, Computer Vision - ECCV 2002, volume 2352 of Lecture Notes in Computer Science, pages 321-334. Springer Berlin Heidelberg.
- Kolmogorov, V. and Zabin, R. (2004). What energy functions can be minimized via graph cuts? Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(2):147-159.
- Müller, E., Günnemann, S., Färber, I., and Seidl, T. (2012). Discovering multiple clustering solutions: Grouping objects in different views of the data. In Proceedings of 28th International Conference on Data Engineering (ICDE-2012), pages 1207-1210.
- Poon, L. K. M., Zhang, N. L., Chen, T., and Wang, Y. (2010). Variable selection in model-based clustering: To do or to facilitate. In Proceedings of the 27th International Conference on Machine Learning (ICML2010, pages 887-894.
- Qi, Z. and Davidson, I. (2009). A principled and flexible framework for finding alternative clusterings. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD-09), pages 717-725.
- Rother, C., Minka, T., Blake, A., and Kolmogorov, V. (2006). Cosegmentation of image pairs by histogram matching-incorporating a global constraint into mrfs. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 1, pages 993-1000. IEEE.
- Russell, B., Freeman, W., Efros, A., Sivic, J., and Zisserman, A. (2006). Using multiple segmentations to discover objects and their extent in image collections. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 2, pages 1605-1614.
- Strehl, A. and Ghosh, J. (2003). Cluster ensembles - a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res., 3:583-617.
Paper Citation
in Harvard Style
Smets J. and Jaeger M. (2014). Multiple Segmentation of Image Stacks . In Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-018-5, pages 5-13. DOI: 10.5220/0004753200050013
in Bibtex Style
@conference{icpram14,
author={Jonathan Smets and Manfred Jaeger},
title={Multiple Segmentation of Image Stacks},
booktitle={Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2014},
pages={5-13},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004753200050013},
isbn={978-989-758-018-5},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Multiple Segmentation of Image Stacks
SN - 978-989-758-018-5
AU - Smets J.
AU - Jaeger M.
PY - 2014
SP - 5
EP - 13
DO - 10.5220/0004753200050013