Automatic Polyp Detection using DSC Edge Detector and HOG Features

Himanshu Agrahari, Yuji Iwahori, M. K. Bhuyan, Somnath Ghorai, Himanshu Kohli, Robert J. Woodham, Kunio Kasugai

2014

Abstract

Endoscopy is a very powerful technology to examine the intestinal tract and to detect the presence of any possible abnormalities like polyps, the main cause of cancer. This paper presents an edge based method for polyp detection in endoscopic video images. It utilizes discrete singular convolution (DSC) algorithm for edge detection/segmentation scheme, then by using conic fitting techniques (ellipse and hyperbola) potential candidates are determined. These candidates are first rotated so as to make major axis in the x-axis direction, and then classified as polyp or non-polyp by SVM classifier which is trained separately for ellipse and hyperbola with HOG features.

References

  1. Alexandre, L. and Nobre, N. (2008). Color and position versus texture features for endoscopic polyp detection. In Int. Conf. on BioMedical Engineering and Informatics (BMEI), Vol.2, pp.38-42. IEEE.
  2. Breckon, T. and Solomon, C. (2011). Fundamentals of digital image processing: a practical approach with examples in matlab. In Wiley-Blackwell, pp.76-79.
  3. Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. In IEEE CVPR, Vol.1, pp.886-893.
  4. Hou, Z. and Wei, G. (2002). A new approach to edge detection. In Pattern Recognition 35 (7), pp.1559-1570.
  5. Hwang, S. and Oh, J. (2007). Polyp detection in colonoscopy video using elliptical shape feature. In Proc. of the Int. Conf. on Image Proc., pp. II-465 - II-468.
  6. Iakovidis, D. and Maroulis, D. (2005). A comparative study of texture features for the discrimination of gastric polyps in endoscopic video. In 18th IEEE Symposium on Computer-Based Medical Systems, Vol.7, No.3, pp.141-152. IEEE.
  7. Iwahori, Y. and Shinohara, T. (2013). Automatic polyp detection using hessian filter. In IAPR MVA2013, Health and Life, 3-1, pp.21-247.
  8. Karargyris, A. and Bourbakis, N. (2009). Identification of polyps in wireless capsule endoscopy videos using log gabor filters. In LiSSA, pp.143-147. LiSSA.
  9. Karkanis, S. and Iakovidis, D. (2003). Computer-aided tumor detection in endoscopic video using color wavelet features. In IEEE Trans. on Information Technology in Biomedicine. IEEE.
  10. Parker, S. and Tong, T. (1997). Cancer statistics 1997. In CA Cancer J. Clinicians, Vol.47, pp.5-27. Wiley.
  11. Shen, H. and Cai, Q. (2009). Simple and efficient method for specularity removal in an image. In Applied Optics, 48(14), pp.2711-2719.
  12. Viana, R. and Iwahori, Y. (2013). Automated polyp image extraction from endoscope images. In International Workshop on Advanced Image Technology (IWAIT2013), pp.216-221. IWAIT.
Download


Paper Citation


in Harvard Style

Agrahari H., Iwahori Y., K. Bhuyan M., Ghorai S., Kohli H., J. Woodham R. and Kasugai K. (2014). Automatic Polyp Detection using DSC Edge Detector and HOG Features . In Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-018-5, pages 495-501. DOI: 10.5220/0004756104950501


in Bibtex Style

@conference{icpram14,
author={Himanshu Agrahari and Yuji Iwahori and M. K. Bhuyan and Somnath Ghorai and Himanshu Kohli and Robert J. Woodham and Kunio Kasugai},
title={Automatic Polyp Detection using DSC Edge Detector and HOG Features},
booktitle={Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2014},
pages={495-501},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004756104950501},
isbn={978-989-758-018-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Automatic Polyp Detection using DSC Edge Detector and HOG Features
SN - 978-989-758-018-5
AU - Agrahari H.
AU - Iwahori Y.
AU - K. Bhuyan M.
AU - Ghorai S.
AU - Kohli H.
AU - J. Woodham R.
AU - Kasugai K.
PY - 2014
SP - 495
EP - 501
DO - 10.5220/0004756104950501