A Dynamic Hybrid Local-spatial Interest Point Matching Algorithm for Articulated Human Body Tracking
Alireza Dehghani, Alistair Sutherland
2014
Abstract
Current interest point (IP) matching algorithms are either local-based or spatial-based. We propose a hybrid local-spatial IP matching algorithm for articulated human body tracking. The first stage is local-based and finds matched pairs of IPs from two lists of reference and target IPs through a local-feature-descriptors-based matching method. The second stage of the algorithm is spatial-based. It starts with the confidently matched pairs of the previous stage, and recovers more matched pairs from the remaining unmatched IPs through graph matching and cyclic string matching. To compensate for the problem of Reference List Leakage (RLL), which decreases the number of reference IPs throughout the frame sequence and causes failure of tracking, an IP List Scoring and Refinement (LSR) strategy is proposed to maintain the number of reference IPs around a specific level. Experimental results show that not only the proposed algorithm increases the precision rate from 61.53% to 97.81%, but also it improves the recall rate from % 52.33 to 96.40%.
References
- Aguilar, W., Frauel, Y., Escolano, F., Martinez-Perez, M. E., Espinosa-Romero, A., and Lozano, M. A. (2009). A robust Graph Transformation Matching for non-rigid registration. Image and Vision Computing, 27(7):897- 910.
- Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. (2008). Speeded-up robust features (surf). Computer Vision and Image Understanding, 110(3):346-359.
- Benezeth, Y., Jodoin, P.-M., Emile, B., Laurent, H., and Rosenberger, C. (2010). Comparative study of background subtraction algorithms. Journal of Electronic Imaging, 19(3):33003.
- Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6):381-395.
- Herda, L., Fua, P., Plankers, R., Boulic, R., and Thalmann, D. (2000). Skeleton-based motion capture for robust reconstruction of human motion. In Computer Animation 2000. Proceedings, pages 77-83. IEEE.
- Leiserson, C. E., Rivest, R. L., Stein, C., and Cormen, T. H. (2001). Introduction to algorithms. The MIT press.
- Li, B., Meng, Q., and Holstein, H. (2003). Point pattern matching and applications-a review. In Systems, Man and Cybernetics, 2003. IEEE International Conference on, volume 1, pages 729-736. IEEE.
- Li, Y., Tsin, Y., Genc, Y., and Kanade, T. (2005). Object detection using 2d spatial ordering constraints. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 2, pages 711-718. IEEE.
- Liu, Z., An, J., and Jing, Y. (2012). A Simple and robust feature point matching algorithm based on restricted spatial order constraints for aerial image registration. Geoscience and Remote Sensing, IEEE Transactions on, 50(2):514-527.
- Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 60(2):91-110.
- Ma, J., Zhao, J., Tian, J., Tu, Z., and Yuille, A. L. (2013). Robust estimation of nonrigid transformation for point set registration. In Proceedings of IEEE conference on Computer Vision and Pattern Recognition. IEEE.
- Maes, M. (1990). On a cyclic string-to-string correction problem. Information Processing Letters, 35(2):73- 78.
- Maji, S. (2006). A Comparison of Feature Descriptors. University of California, Berkeley.
- Mikolajczyk, K. and Schmid, C. (2005). A performance evaluation of local descriptors. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(10):1615-1630.
- Olson, D. L. and Delen, D. (2008). Advanced data mining techniques [electronic resource]. Springer.
- Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). ORB: an efficient alternative to SIFT or SURF. In Computer Vision (ICCV), 2011 IEEE International Conference on, pages 2564-2571. IEEE.
- Wagner, R. A. and Fischer, M. J. (1974). The stringto-string correction problem. Journal of the ACM (JACM), 21(1):168-173.
- Wen, G.-J., Lv, J.-j., and Yu, W.-x. (2008). A highperformance feature-matching method for image registration by combining spatial and similarity information. Geoscience and Remote Sensing, IEEE Transactions on, 46(4):1266-1277.
- Wu, W. Y. (2001). Two-dimensional object recognition through string matching. Imaging science journal, 49(4):213-221.
- Wu, W.-Y. (2011). A string matching method for hand recognition. In Natural Computation (ICNC), 2011 Seventh International Conference on, volume 3, pages 1598-1601. IEEE.
- Zheng, Y. and Doermann, D. (2006). Robust point matching for nonrigid shapes by preserving local neighborhood structures. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 28(4):643-649.
- Zhou, H., Yuan, Y., and Shi, C. (2009). Object tracking using sift features and mean shift. Computer Vision and Image Understanding, 113(3):345-352.
Paper Citation
in Harvard Style
Dehghani A. and Sutherland A. (2014). A Dynamic Hybrid Local-spatial Interest Point Matching Algorithm for Articulated Human Body Tracking . In Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-018-5, pages 536-543. DOI: 10.5220/0004786705360543
in Bibtex Style
@conference{icpram14,
author={Alireza Dehghani and Alistair Sutherland},
title={A Dynamic Hybrid Local-spatial Interest Point Matching Algorithm for Articulated Human Body Tracking},
booktitle={Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2014},
pages={536-543},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004786705360543},
isbn={978-989-758-018-5},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - A Dynamic Hybrid Local-spatial Interest Point Matching Algorithm for Articulated Human Body Tracking
SN - 978-989-758-018-5
AU - Dehghani A.
AU - Sutherland A.
PY - 2014
SP - 536
EP - 543
DO - 10.5220/0004786705360543