Finding Coherent Regions in PET Images for the Diagnosis of Alzheimer’s Disease

Helena Aidos, João Duarte, Ana Fred

2014

Abstract

Alzheimer's disease is a type of dementia that mainly affects elderly people, with unknown causes and no effective treatment up to date. The diagnosis of this disease in an earlier stage is crucial to improve patients' life quality. Current techniques focus on the analysis of neuroimages, like FDG-PET or MRI, to find changes in the brain activity. While high accuracies can be obtained by combining the analysis of several types of neuroimages, they are expensive and not always available for medical analysis. Achieving similar results using only 3-D FDG-PET scans is therefore of huge importance. While directly applying classifiers to the FDG-PET scan voxel intensities can lead to good prediction accuracies, it results in a problem that suffers from the curse of dimensionality. This paper thus proposes a methodology to identify regions of interest by segmenting 3-D FDG-PET scans and extracting features that represent each of those regions of interest, reducing the dimensionality of the space. Experimental results show that the proposed methodology outperforms the one using voxel intensities despite only a small number of features is needed to achieve that result.

References

  1. Arbeláez, P., Maire, M., Fowlkes, C., and Malik, J. (2011). Contour detection and hierarchical image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence, 33(5):898-916.
  2. Association, A. (2013). 2013 Alzheimer's disease facts and figures. Alzheimer's & Dementia: The Journal of the Alzheimer's Association, 9(2):208-245.
  3. Beucher, S. and Lantuejoul, C. (1979). Use of watersheds in contour detection. In Int. Work. on Image Processing: Real-time Edge and Motion Detection/Estimation.
  4. Bicacro, E., Silveira, M., Marques, J. S., and Costa, D. C. (2012). 3D image-based diagnosis of Alzheimer's disease: bringing medical vision into feature selection. In Int. Symp. on Biomedical Imaging, pages 134-137.
  5. Chaves, R., Ramirez, J., Gorriz, J. M., Lopez, M., Alvarez, I., Salas-Gonzalez, D., Segovia, F., and Padilla, P. (2009). SPECT image classification based on NMSE feature correlation weighting and SVM. In IEEE Nuclear Science Symp. Conf. Record, pages 2715-2710.
  6. Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20:273-297.
  7. Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Int. Conf. on Knowledge Discovery and Data Mining, pages 226- 231.
  8. Fan, Y., Batmanghelich, N., Clark, C., and Davatzikos, C. (2008). Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. NeuroImage, 39:1731-1743.
  9. Gerardin, E., Chételat, G., Chupin, M., Cuingnet, R., Desgranges, B., Kim, H.-S., Niethammer, M., Dubois, B., Lehéricy, S., Garnero, L., Eustache, F., and Colliot, O. (2009). Multidimensional classification of hippocampal shape features discriminates Alzheimer's disease and mild cognitive impairment from normal aging. NeuroImage, 47(4):1476-1486.
  10. Lopez, M., Ramirez, J., Gorriz, J. M., Salas-Gonzalez, D., Alvarez, I., Segovia, F., and Chaves, R. (2009). Multivariate approaches for Alzheimer's disease diagnosis using bayesian classifiers. In IEEE Nuclear Science Symp. Conf. Record, pages 3190-3193.
  11. Mikhno, A., Nuevo, P. M., Devanand, D. P., Parsey, R. V., and Laine, A. F. (2012). Multimodal classification of dementia using functional data, anatomical features and 3D invariant shape descriptors. In Int. Symp. on Biomedical Imaging, pages 606-609.
  12. Morgado, P., Silveira, M., and Marques, J. S. (2013). Efficient selection of non-redundant features for the diagnosis of Alzheimer's disease. In Int. Symp. on Biomedical Imaging, pages 640-643.
  13. Ramírez, J., Górriz, J. M., Salas-Gonzalez, D., Romero, A., L ópez, M., Í lvarez, I., and Gómez-Río, M. (2013). Computer-aided diagnosis of Alzheimer's type dementia combining support vector machines and discriminant set of features. Information Sciences, 237:59-72.
  14. Segovia, F., Górriz, J. M., Ramírez, J., Salas-Gonzalez, D., Í lvarez, I., L ópez, M., and Chaves, R. (2012). A comparative study of feature extraction methods for the diagnosis of Alzheimer's disease using the ADNI database. Neurocomputing, 75:64-71.
  15. Silveira, M. and Marques, J. S. (2010). Boosting Alzheimer disease diagnosis using PET images. In Int. Conf. on Pattern Recognition, pages 2556-2559.
  16. Tran, T. N., Nguyen, T. T., Willemsz, T. A., van Kessel, G., Frijlink, H. W., and van der Voort Maarschalk, K. (2012). A density-based segmentation for 3D images, an application for X-ray micro-tomography. Analytica Chimica Acta, 725:14-21.
  17. Tripathi, S., Kumar, K., Singh, B. K., and Singh, R. P. (2012). Image segmentation: a review. Int. Journal of Computer Science and Management Research, 1(4):838-843.
  18. Varma, S. and Simon, R. (2006). Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics, 7(91).
  19. Ye, J., Farnum, M., Yang, E., Verbeeck, R., Lobanov, V., Raghavan, N., Novak, G., DiBernardo, A., and Narayan, V. (2012). Sparse learning and stability selection for predicting MCI to AD conversion using baseline ADNI data. BMC Neurology, 12(46).
  20. Zhang, D., Wang, Y., Zhou, L., Yuan, H., and Shen, D. (2011). Multimodal classification of Alzheimer's disease and mild cognitive impairment. NeuroImage, 55(3):856-867.
Download


Paper Citation


in Harvard Style

Aidos H., Duarte J. and Fred A. (2014). Finding Coherent Regions in PET Images for the Diagnosis of Alzheimer’s Disease . In Proceedings of the International Conference on Bioimaging - Volume 1: BIOIMAGING, (BIOSTEC 2014) ISBN 978-989-758-014-7, pages 12-18. DOI: 10.5220/0004802200120018


in Bibtex Style

@conference{bioimaging14,
author={Helena Aidos and João Duarte and Ana Fred},
title={Finding Coherent Regions in PET Images for the Diagnosis of Alzheimer’s Disease},
booktitle={Proceedings of the International Conference on Bioimaging - Volume 1: BIOIMAGING, (BIOSTEC 2014)},
year={2014},
pages={12-18},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004802200120018},
isbn={978-989-758-014-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bioimaging - Volume 1: BIOIMAGING, (BIOSTEC 2014)
TI - Finding Coherent Regions in PET Images for the Diagnosis of Alzheimer’s Disease
SN - 978-989-758-014-7
AU - Aidos H.
AU - Duarte J.
AU - Fred A.
PY - 2014
SP - 12
EP - 18
DO - 10.5220/0004802200120018