Methods for Quality Control of Low-resolution MALDI-ToF Spectra

Michal Marczyk, Joanna Polanska

2014

Abstract

Protein profiling of human blood serum or plasma using MALDI-ToF mass spectrometry may be used for identification of candidates for disease biomarkers. Due to many biological and technical difficulties emerging during preparation of the sample and spectra measurement quality control step is becoming important. In this study we compared different methods for finding low quality spectra based on the Pearson correlation coefficient and proposed two novel solutions. First one utilizes information about area under the measured spectrum and other incorporates modeling of signal-to-noise ratio of spectra intensity by mixture of Gaussians. Obtained results show that removing of outlying samples increases the similarity of spectra obtained within the same experimental conditions. What is more important it increases reproducibility of peak detection by decreasing the coefficient of variation of peaks intensities within a group and increasing its prevalence. This work shows that appropriate identification and removing of low quality spectra is a necessary step in analysis of mass spectrometry data and proposed tools are appropriate for quality control of MALDI-ToF data.

References

  1. Coombes, K. R., Fritsche, H. A., J., Clarke, C., Chen, J. N., Baggerly, K. A., Morris, J. S., Xiao, L. C., Hung, M. C., and Kuerer, H. M. (2003). Quality control and peak finding for proteomics data collected from nipple aspirate fluid by surface-enhanced laser desorption and ionization. Clinical Chemistry, 49(10):1615-23.
  2. Du, P., Kibbe, W. A., and Lin, S. M. (2006). Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching. Bioinformatics, 22(17):2059-65.
  3. Frank, A. M., Bandeira, N., Shen, Z., Tanner, S., Briggs, S. P., Smith, R. D., and Pevzner, P. A. (2008). Clustering millions of tandem mass spectra. J Proteome Res, 7(1):113-22.
  4. Hilario, M., Kalousis, A., Pellegrini, C., and Muller, M. (2006). Processing and classification of protein mass spectra. Mass Spectrometry Reviews, 25(3):409-49.
  5. Hong, H., Dragan, Y., Epstein, J., Teitel, C., Chen, B., Xie, Q., Fang, H., Shi, L., Perkins, R., and Tong, W. (2005). Quality control and quality assessment of data from surface-enhanced laser desorption/ionization (seldi) time-of flight (tof) mass spectrometry (ms). BMC Bioinformatics, 6 Suppl 2:S5.
  6. Hubert, M. and Van der Veeken, S. (2008). Outlier detection for skewed data. Journal of Chemometrics, 22(3- 4):235-246.
  7. Marczyk, M., Jaksik, R., Polanski, A., and Polanska, J. (2013). Adaptive filtering of microarray gene expression data based on gaussian mixture decomposition. BMC Bioinformatics, 14(1):101.
  8. Palmblad, M., Tiss, A., and Cramer, R. (2009). Mass spectrometry in clinical proteomics - from the present to the future. Proteomics. Clinical applications, 3(1):6- 17.
  9. Pietrowska, M., Polanska, J., Suwinski, R., Widel, M., Rutkowski, T., Marczyk, M., Dominczyk, I., Ponge, L., Marczak, L., Polanski, A., and Widlak, P. (2012). Comparison of peptide cancer signatures identified by mass spectrometry in serum of patients with head and neck, lung and colorectal cancers: Association with tumor progression. International Journal of Oncology, 40(1):148-156.
  10. Slany, A., Haudek, V. J., Gundacker, N. C., Griss, J., Mohr, T., Wimmer, H., Eisenbauer, M., Elbling, L., and Gerner, C. (2009). Introducing a new parameter for quality control of proteome profiles: consideration of commonly expressed proteins. Electrophoresis, 30(8):1306-28.
  11. Whistler, T., Rollin, D., and Vernon, S. D. (2007). A method for improving seldi-tof mass spectrometry data quality. Proteome Science, 5:14.
  12. Widlak, P., Pietrowska, M., Wojtkiewicz, K., Rutkowski, T., Wygoda, A., Marczak, L., Marczyk, M., Polanska, J., Walaszczyk, A., Dominczyk, I., Skladowski, K., Stobiecki, M., and Polanski, A. (2011). Radiation-related changes in serum proteome profiles detected by mass spectrometry in blood of patients treated with radiotherapy due to larynx cancer. Journal of Radiation Research, 52(5):575-581.
  13. Wong, J. W., Durante, C., and Cartwright, H. M. (2005). Application of fast fourier transform cross-correlation for the alignment of large chromatographic and spectral datasets. Analytical Chemistry, 77(17):5655-61.
  14. Wu, B., Abbott, T., Fishman, D., McMurray, W., Mor, G., Stone, K., Ward, D., Williams, K., and Zhao, H. (2006). Ovarian cancer classification based on mass spectrometry analysis of sera. Cancer Inform, 2:123- 32.
Download


Paper Citation


in Harvard Style

Marczyk M. and Polanska J. (2014). Methods for Quality Control of Low-resolution MALDI-ToF Spectra . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014) ISBN 978-989-758-012-3, pages 172-177. DOI: 10.5220/0004804201720177


in Bibtex Style

@conference{bioinformatics14,
author={Michal Marczyk and Joanna Polanska},
title={Methods for Quality Control of Low-resolution MALDI-ToF Spectra},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014)},
year={2014},
pages={172-177},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004804201720177},
isbn={978-989-758-012-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2014)
TI - Methods for Quality Control of Low-resolution MALDI-ToF Spectra
SN - 978-989-758-012-3
AU - Marczyk M.
AU - Polanska J.
PY - 2014
SP - 172
EP - 177
DO - 10.5220/0004804201720177