Feature Extraction in Pet Images for the Diagnosis of Alzheimer’s Disease
João Duarte, Helena Aidos, Ana Fred
2014
Abstract
Alzheimer’s disease accounts for an estimated 60% to 80% of cases of dementia and its victims are mainly elderly people. Recently, several computer-aided diagnosis systems have been developed, based on extracting information from FDG-PET scans. 3-dimensional FDG-PET images, under a voxel-as-feature approach, lead to high-dimensional feature spaces, which results in system performance problems. In order to reduce the dimensionality of these images, multi-scale methods may be used as feature extraction. We propose a multiscale approach for feature extraction of 3-dimensional images to improve the performance of a diagnosis system using clustering techniques. To evaluate the performance of our approach we applied it to a database obtained from Alzheimer’s Disease Neuroimaging Initiative (ADNI) and compare it with Gaussian pyramid technique. Experimental results have shown that the proposed approach is a good option for image feature reduction, outperforming the Gaussian pyramid technique.
References
- Alzheimer's Association (2013). Alzheimer's disease facts and figures Alzheimer's association. ALZHEIMERS & DEMENTIA, 9(2):208-245.
- Burt, P. J. (1981). Fast filter transform for image processing. Comp. graphics and image proc.
- Cortes, C. and Vapnik, V. (1995). Support-vector networks. Mach. Learn., 20(3):273-297.
- Dukart, J., Mueller, K., Barthel, H., Villringer, A., Sabri, O., and Schroeter, M. L. (2013). Meta-analysis based SVM classification enables accurate detection of Alzheimer's disease across different clinical centers using FDG-PET and MRI. Psych. Res.: Neuroimaging, 212(3):230 - 236.
- Dukart, J., Mueller, K., Horstmann, A., Barthel, H., Möller, H. E., Villringer, A., Sabri, O., and Schroeter, M. L. (2011). Combined evaluation of FDG-PET and MRI improves detection and differentiation of dementia. PLoS ONE, 6(3).
- Gray, K., Wolz, R., Heckemann, R., Aljabar, P., Hammers, A., and Rueckert, D. (2012). Multi-region analysis of longitudinal FDG-PET for the classification of Alzheimer's disease. NeuroImage, 60(1):221-229.
- Gray, K. R., Aljabar, P., Heckemann, R. A., Hammers, A., and Rueckert, D. (2013). Random forest-based similarity measures for multi-modal classification of Alzheimer's disease. NeuroImage, 65(0):167 - 175.
- Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection. J. Mach. Learn. Res., 3:1157-1182.
- Illán, I. A., Górriz, J. M., Ramírez, J., Salas-Gonzalez, D., López, M. M., Segovia, F., Chaves, R., Gómez-Rio, M., and Puntonet, C. G. (2011). 18F-FDG PET imaging analysis for computer aided Alzheimer's diagnosis. Inf. Sci., 181(4):903-916.
- MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. In Cam, L. M. L. and Neyman, J., editors, Proc. of the fifth Berkeley Symposium on Mathematical Statistics and Probability, volume 1, pages 281-297. University of California Press.
- Maldjian, J. A., Laurienti, P. J., Kraft, R. A., and Burdette, J. H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage, 19(3):1233 - 1239.
- Martínez-Murcia, F. J., Górriz, J. M., Ramírez, J., Puntonet, C. G., and Salas-Gonzalez, D. (2012). Computer aided diagnosis tool for Alzheimer's disease based on Mann-Whitney-Wilcoxon u-test. Expert Syst. Appl., 39(10):9676-9685.
- Morgado, P., Silveira, M., and Marques, J. (2013a). Efficient selection of non-redundant features for the diagnosis of Alzheimer's disease. In Biomedical Imaging (ISBI), 2013 IEEE 10th International Symposium on, pages 640-643.
- Morgado, P., Silveira, M., and Marques, J. S. (2013b). Diagnosis of Alzheimer's disease using 3D local binary patterns. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 1(1):2-12.
- Morgado, P. M. M. (2012). Automated diagnosis of Alzheimer's disease using PET images. Master's thesis, Instituto Superior Técnico - Universidade Técnica de Lisboa.
- Natarajan, S., Joshi, S., Saha, B. N., Edwards, A., Khot, T., Moody, E., Kersting, K., Whitlow, C. T., and Maldjian, J. A. (2012). A machine learning pipeline for three-way classification of Alzheimer patients from structural magnetic resonance images of the brain. In ICMLA, pages 203-208.
- Ramirez, J., Gorriz, J., Salas-Gonzalez, D., Romero, A., Lopez, M., Alvarez, I., and Gomez-Rio, M. (2013). Computer-aided diagnosis of Alzheimer's type dementia combining support vector machines and discriminant set of features. Information Sciences - Prediction, Control and Diagnosis using Advanced Neural Computations, 237(0):59 - 72.
- Savio, A. and Gran˜a, M. (2013). Deformation based feature selection for computer aided diagnosis of Alzheimer's disease. Expert Systems with Applications, 40(5):1619 - 1628.
- Segovia, F., Górriz, J., Ramírez, J., Salas-Gonzalez, D., Í lvarez, I., López, M., and Chaves, R. (2012). A comparative study of feature extraction methods for the diagnosis of Alzheimer's disease using the ADNI database. Neurocomputing, 75(1):64 - 71.
- Varma, S. and Simon, R. (2006). Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics, 7(91).
- Zhang, D., Wang, Y., Zhou, L., Yuan, H., and Shen, D. (2011). Multimodal classification of Alzheimer's disease and mild cognitive impairment. NeuroImage, 55(3):856-867.
Paper Citation
in Harvard Style
Duarte J., Aidos H. and Fred A. (2014). Feature Extraction in Pet Images for the Diagnosis of Alzheimer’s Disease . In Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-018-5, pages 561-568. DOI: 10.5220/0004808705610568
in Bibtex Style
@conference{icpram14,
author={João Duarte and Helena Aidos and Ana Fred},
title={Feature Extraction in Pet Images for the Diagnosis of Alzheimer’s Disease},
booktitle={Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2014},
pages={561-568},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004808705610568},
isbn={978-989-758-018-5},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Feature Extraction in Pet Images for the Diagnosis of Alzheimer’s Disease
SN - 978-989-758-018-5
AU - Duarte J.
AU - Aidos H.
AU - Fred A.
PY - 2014
SP - 561
EP - 568
DO - 10.5220/0004808705610568