Bio-inspired Metaheuristic based Visual Tracking and Ego-motion Estimation
J. R. Siddiqui, S. Khatibi
2014
Abstract
The problem of robust extraction of ego-motion from a sequence of images for an eye-in-hand camera configuration is addressed. A novel approach toward solving planar template based tracking is proposed which performs a non-linear image alignment and a planar similarity optimization to recover camera transformations from planar regions of a scene. The planar region tracking problem as a motion optimization problem is solved by maximizing the similarity among the planar regions of a scene. The optimization process employs an evolutionary metaheuristic approach in order to address the problem within a large non-linear search space. The proposed method is validated on image sequences with real as well as synthetic image datasets and found to be successful in recovering the ego-motion. A comparative analysis of the proposed method with various other state-of-art methods reveals that the algorithm succeeds in tracking the planar regions robustly and is comparable to the state-of-the art methods. Such an application of evolutionary metaheuristic in solving complex visual navigation problems can provide different perspective and could help in improving already available methods.
References
- Aarts, E. & Korst, J., 1988. Simulated annealing and Boltzmann machines. Available at: http:// www.osti.gov/energycitations/product.biblio.jsp?osti_i d=5311236 [Accessed February 16, 2013].
- Baik, Y.K. et al., 2013. Geometric Particle Swarm Optimization for Robust Visual Ego-Motion Estimation via Particle Filtering. Image and Vision Computing. Available at: http://www.sciencedirect.com/science/article/pii/S026 2885613000760 [Accessed November 29, 2013].
- Baker, S. & Matthews, I., 2004. Lucas-kanade 20 years on: A unifying framework. International Journal of Computer Vision, 56(3), pp.221-255.
- Benhimane, S. & Malis, E., 2007. Homography-based 2d visual tracking and servoing. The International Journal of Robotics Research, 26(7), pp.661-676.
- Bjorck, A., 1996. Numerical methods for least squares problems, Society for Industrial Mathematics. Available at: http://www.google.com/ books?hl=sv&lr=&id=ZecsDBMz5-IC&oi=fnd&pg= PA1&dq=+Numerical+methods+for+least+squares+pr oblems&ots=pv2cIqQLF_&sig=kWPokcP6qIVXpuuy LRApvkBUrY4 [Accessed March 6, 2013].
- Cobzas, D. & Sturm, P., 2005. 3d ssd tracking with estimated 3d planes. In Computer and Robot Vision, 2005. Proceedings. The 2nd Canadian Conference on. pp. 129-134. Available at: http://ieeexplore.ieee.org/ xpls/abs_all.jsp?arnumber=1443121 [Accessed February 15, 2013].
- Davison, A. J., 2003. Real-time simultaneous localisation and mapping with a single camera. In Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on. pp. 1403-1410. Available at: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1 238654 [Accessed February 16, 2013].
- Dowson, N. & Bowden, R., 2006. A unifying framework for mutual information methods for use in non-linear optimisation. Computer Vision-ECCV 2006, pp.365- 378.
- Dowson, N. & Bowden, R., 2008. Mutual information for lucas-kanade tracking (milk): An inverse compositional formulation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 30(1), pp.180-185.
- Eade, E. & Drummond, T., 2006. Scalable monocular SLAM. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on. pp. 469- 476. Available at: http://ieeexplore.ieee.org/ xpls/abs_all.jsp?arnumber=1640794 [Accessed February 16, 2013].
- Goldberg, D. E., 1989. Genetic algorithms in search, optimization, and machine learning. Available at: http://www.citeulike.org/group/712/article/125978 [Accessed February 16, 2013].
- Günther, M. & Nissen, V., 2009. A comparison of neighbourhood topologies for staff scheduling with particle swarm optimisation. KI 2009: Advances in Artificial Intelligence, pp.185-192.
- Hartley, R. & Zisserman, A., 2000. Multiple view geometry in computer vision, Cambridge Univ Press. Available at: http://journals.cambridge.org/ production/action/cjoGetFulltext?fulltextid=289189 [Accessed February 17, 2013].
- Irani, M. & Anandan, P., 2000. About direct methods. Vision Algorithms: Theory and Practice, pp.267-277.
- Jurie, F. & Dhome, M., 2002. Hyperplane approximation for template matching. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(7), pp.996- 1000.
- Kennedy, J. & Eberhart, R., 1995. Particle swarm optimization. In Neural Networks, 1995. Proceedings., IEEE International Conference on. pp. 1942-1948. Available at: http://ieeexplore.ieee.org/ xpls/abs_all.jsp?arnumber=488968 [Accessed February 15, 2013].
- Klein, G. & Murray, D., 2009. Parallel tracking and mapping on a camera phone. In Mixed and Augmented Reality, 2009. ISMAR 2009. 8th IEEE International Symposium on. pp. 83-86. Available at: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5 336495 [Accessed February 15, 2013].
- Lee, G. H. et al., 2010. A benchmarking tool for MAV visual pose estimation. In Control Automation Robotics & Vision (ICARCV), 2010 11th International Conference on. pp. 1541-1546. Available at: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5 707339 [Accessed September 1, 2012].
- Lucas, B. D. & Kanade, T., 1981. An iterative image registration technique with an application to stereo vision. In Proceedings of the 7th international joint conference on Artificial intelligence. Available at: http://www.ri.cmu.edu/pub_files/pub3/lucas_bruce_d_ 1981_1/lucas_bruce_d_1981_1.ps.gz [Accessed August 30, 2012].
- Montemerlo, M. et al., 2002. FastSLAM: A factored solution to the simultaneous localization and mapping problem. In Proceedings of the National conference on Artificial Intelligence. pp. 593-598.
- More, J., 1978. The Levenberg-Marquardt algorithm: implementation and theory. Numerical analysis, pp.105-116.
- Philippides, A. et al., 2012. How Can Embodiment Simplify the Problem of View-Based Navigation? Biomimetic and Biohybrid Systems, pp.216-227.
- Pirchheim, C. & Reitmayr, G., 2011. Homography-based planar mapping and tracking for mobile phones. In pp. 27-36. Available at: http://www.scopus.com/ inward/record.url?eid=2-s2.0- 84055193420&partnerID=40&md5=e5215d84ef1b5a8 ad70c09c10c12de6c.
- Scaramuzza, D., Fraundorfer, F. & Siegwart, R., 2009. Real-time monocular visual odometry for on-road vehicles with 1-point ransac. In Robotics and Automation, 2009. ICRA'09. IEEE International Conference on. pp. 4293-4299. Available at: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5 152255 [Accessed September 2, 2012].
- Shannon, C. E., 2001. A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review, 5(1), pp.3- 55.
- Silveira, G., Malis, E. & Rives, P., 2008. An efficient direct approach to visual SLAM. Robotics, IEEE Transactions on, 24(5), pp.969-979.
- Torr, P. & Zisserman, A., 2000. Feature based methods for structure and motion estimation. Vision Algorithms: Theory and Practice, pp.278-294.
- Trelea, I. C., 2003. The particle swarm optimization algorithm: convergence analysis and parameter selection. Information processing letters, 85(6), pp.317-325.
- Wagner, D., Schmalstieg, D. & Bischof, H., 2009. Multiple target detection and tracking with guaranteed framerates on mobile phones. In Mixed and Augmented Reality, 2009. ISMAR 2009. 8th IEEE International Symposium on. pp. 57-64. Available at: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5 336497 [Accessed February 16, 2013].
- Warren, M. et al., 2010. Unaided stereo vision based pose estimation. Available at: http://eprints.qut.edu.au/ 39881/ [Accessed June 22, 2013].
- Zhou, H., Green, P. R. & Wallace, A. M., 2009. Estimation of epipolar geometry by linear mixedeffect modelling. Neurocomputing, 72(16-18), pp.3881-3890.
- Zhou, H., Wallace, A. M. & Green, P. R., 2009. Efficient tracking and ego-motion recovery using gait analysis. Signal Processing, 89(12), pp.2367-2384.
Paper Citation
in Harvard Style
R. Siddiqui J. and Khatibi S. (2014). Bio-inspired Metaheuristic based Visual Tracking and Ego-motion Estimation . In Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-018-5, pages 569-579. DOI: 10.5220/0004811105690579
in Bibtex Style
@conference{icpram14,
author={J. R. Siddiqui and S. Khatibi},
title={Bio-inspired Metaheuristic based Visual Tracking and Ego-motion Estimation},
booktitle={Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2014},
pages={569-579},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004811105690579},
isbn={978-989-758-018-5},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 3rd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Bio-inspired Metaheuristic based Visual Tracking and Ego-motion Estimation
SN - 978-989-758-018-5
AU - R. Siddiqui J.
AU - Khatibi S.
PY - 2014
SP - 569
EP - 579
DO - 10.5220/0004811105690579