Contour-Net - A Model for Tactile Contour-tracing and Shape-recognition
André Frank Krause, Thierry Hoinville, Nalin Harischandra, Volker Dürr
2014
Abstract
We propose Contour-Net as a bio-inspired model for rhythmic movement control of a pair of insectoid feelers, able to successively sample the contour of arbitrarily shaped objects. Initial object contact initiates a smooth transition from a large-amplitude, low-frequency searching behaviour to a local, small-amplitude and high frequency sampling behaviour. Both behavioural states are defined by the parameters of a Hopf Oscillator. Subsequent contact signals trigger a 180º phase-forwarding of the oscillator, resulting in repeated sampling of the object. The local sampling behaviour effectively serves as a contour-tracing method with high robustness, even for complicated shapes. Collected contour data points can be directly fed into an artificial neural network to classify the shape of an object. Given a sufficiently large training dataset, tactile shape recognition can be achieved in a position-, orientation- and size-invariant manner. Only minimal pre-processing (normalisation) of contour data points is required.
References
- Beyer, K., Goldstein, J., Ramakrishnan, R., and Shaft, U. (1999). When is "nearest neighbor" meaningful? In Beeri, C. and Buneman, P., editors, Database Theory - ICDT 99, volume 1540 of Lecture Notes in Computer Science, pages 217-235. Springer Berlin Heidelberg.
- Buchli, J., Righetti, L., and Ijspeert, A. J. (2005). A dynamical systems approach to learning: a frequencyadaptive hopper robot. In Proceedings of the VIIIth European Conference on Artificial Life (ECAL 2005), Lecture Notes in Artificial Intelligence, pages 210- 212.
- Dürr, V., König, Y., and Kittmann, R. (2001). The antennal motor system of the stick insect Carausius morosus: Anatomy and antennal movement pattern during walking. Journal of Comparative Physiology A, 187(2):131-144.
- Erber, J., Kierzek, S., Sander, E., and Grandy, K. (1998). Tactile learning in the honeybee. Journal of Comparative Physiology A, 183:737-744.
- Esslen, J. and Kaissling, K.-E. (1976). Zahl und verteilung antennaler sensillen bei der honigbiene (Apis mellifera l.). Zoomorphology, 83:227-251. 10.1007/BF00993511.
- Hochreiter, S., Bengio, Y., Frasconi, P., and Schmidhuber, J. (2001). Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. In S. C. Kremer, J. F. K., editor, A Field Guide to Dynamical Recurrent Neural Networks. IEEE Press.
- Hoinville, T., Wehner, R., and Cruse, H. (2012). Learning and retrieval of memory elements in a navigation task. In Prescott, T., Lepora, N., Mura, A., and Verschure, P., editors, Biomimetic and Biohybrid Systems, volume 7375 of Lecture Notes in Computer Science, pages 120-131. Springer Berlin Heidelberg.
- Huang, G.-B., Zhu, Q.-Y., and Siew, C.-K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1-3):489 - 501.
- Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: A review. Neural Networks, 21(4):642 - 653.
- Ijspeert, A. J., Crespi, A., Ryczko, D., and Cabelguen, J.- M. (2007). From swimming to walking with a salamander robot driven by a spinal cord model. Science, 315(5817):1416-1420.
- Kaneko, M., Kanayama, N., and Tsuji, T. (1995). 3-d active antenna for contact sensing. In IEEE International Conference on Robotics and Automation, volume 1, pages 1113-1119. IEEE.
- Kaneko, M., Kanayma, N., and Tsuji, T. (1998). Active antenna for contact sensing. IEEE Transactions on Robotics and Automation, 14(2):278-291.
- Kevan, P. G. and Lane, M. A. (1985). Flower petal microtexture is a tactile cue for bees. Proceedings of the National Academy of Sciences, 82(14):4750-4752.
- Kim, D. and Möller, R. (2007). Biomimetic whiskers for shape recognition. Robotics and Autonomous Systems, 55(3):229-243.
- Krause, A. F. and Dürr, V. (2004). Tactile efficiency of insect antennae with two hinge joints. Biological Cybernetics, 91(3):168-181.
- Krause, A. F. and Dürr, V. (2012). Active tactile sampling by an insect in a step-climbing paradigm. Frontiers in Behavioural Neuroscience, 6(30):1-17.
- Krause, A. F., Essig, K., Piefke, M., and Schack, T. (2013a). No-prop-fast - a high-speed multilayer neural network learning algorithm: Mnist benchmark and eyetracking data classification. In Engineering Applications of Neural Networks (EANN 2013), pages 446- 455. Springer.
- Krause, A. F., Winkler, A., and Dürr, V. (2013b). Central drive and proprioceptive control of antennal movements in the walking stick insect. Journal of Physiology-Paris, 107(1-2):116 - 129.
- LeCun, Y., Bottou, L., Orr, G. B., and Müller, K.-R. (1998). Efficient backprop. In Orr, G. B. and Müller, K.-R., editors, Neural Networks: Tricks of the Trade, volume 1524 of Lecture Notes in Computer Science, pages 9- 50. Springer Berlin Heidelberg.
- Lederman, S. and Klatzky, R. (2009). Haptic perception: A tutorial. Attention, Perception, & Psychophysics, 71(7):1439-1459. 10.3758/APP.71.7.1439.
- Lee, M. and Nicholls, H. (1999). Review article tactile sensing for mechatronics - a state of the art survey. Mechatronics, 9(1):1 - 31.
- Patanè, L., Hellbach, S., Krause, A. F., Arena, P., and Dürr, V. (2012). An insect-inspired bionic sensor for tactile localization and material classification with statedependent modulation. Frontiers in Neurorobotics, 6(8):1-18.
- Righetti, L. and Ijspeert, A. J. (2006). Programmable central pattern generators: an application to biped locomotion control. In IEEE International Conference on Robotics and Automation (ICRA), pages 1585-1590. IEEE.
- Russell, R. A. and Wijaya, J. A. (2003). Object location and recognition using whisker sensors. In Australasian Conference on Robotics and Automation, pages 761- 768.
- Schilling, M., Hoinville, T., Schmitz, J., and Cruse, H. (2013). Walknet, a bio-inspired controller for hexapod walking. Biological Cybernetics, 107(4):397-419.
- Schütz, C. and Dürr, V. (2011). Active tactile exploration for adaptive locomotion in the stick insect. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1581):2996-3005.
- Solomon, J. H. and Hartmann, M. J. (2006). Biomechanics: Robotic whiskers used to sense features. Nature, 443(7111):525.
- Staudacher, E., Gebhardt, M. J., and Dürr, V. (2005). Antennal movements and mechanoreception: neurobiology of active tactile sensors. Advances in Insect Physiology, 32:49 - 205.
- Widrow, B., Greenblatt, A., Kim, Y., and Park, D. (2013). The No-Prop algorithm: A new learning algorithm for multilayer neural networks. Neural Networks, 37:182-188.
Paper Citation
in Harvard Style
Frank Krause A., Hoinville T., Harischandra N. and Dürr V. (2014). Contour-Net - A Model for Tactile Contour-tracing and Shape-recognition . In Proceedings of the 6th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-758-016-1, pages 92-101. DOI: 10.5220/0004821700920101
in Bibtex Style
@conference{icaart14,
author={André Frank Krause and Thierry Hoinville and Nalin Harischandra and Volker Dürr},
title={Contour-Net - A Model for Tactile Contour-tracing and Shape-recognition},
booktitle={Proceedings of the 6th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},
year={2014},
pages={92-101},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004821700920101},
isbn={978-989-758-016-1},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 6th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - Contour-Net - A Model for Tactile Contour-tracing and Shape-recognition
SN - 978-989-758-016-1
AU - Frank Krause A.
AU - Hoinville T.
AU - Harischandra N.
AU - Dürr V.
PY - 2014
SP - 92
EP - 101
DO - 10.5220/0004821700920101