A Survey on Challenges and Methods in News Recommendation

Özlem Özgöbek, Jon Atle Gulla, R. Cenk Erdur

2014

Abstract

Recommender systems are built to provide the most proper item or information within the huge amount of data on the internet without the manual effort of the users. As a specific application domain, news recommender systems aim to give the most relevant news article recommendations to users according to their personal interests and preferences. News recommendation have specific challenges when compared to the other domains. From the technical point of view there are many different methods to build a recommender system. Thus, while general methods are used in news recommendation, researchers also need some new methods to make proper news recommendations. In this paper we present the different approaches to news recommender systems and the challenges of news recommendation.

References

  1. Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. Knowledge and Data Engineering, IEEE Transactions on, 17(6):734-749.
  2. Borges, H. L. and Lorena, A. C. (2010). A survey on recommender systems for news data. In Smart Information and Knowledge Management, pages 129-151. Springer.
  3. Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User Modeling and User-Adapted Interaction, 12(4):331-370.
  4. Cantador, I., Bellogín, A., and Castells, P. (2008). News@hand: A semantic web approach to recommending news. In Proceedings of the 5th international conference on Adaptive Hypermedia and Adaptive Web-Based Systems, AH 7808, pages 279-283, Berlin, Heidelberg. Springer-Verlag.
  5. Das, A., Datar, M., Garg, A., and Rajaram, S. (2007). Google news personalization: Scalable online collaborative filtering. In WWW 7807 Proceedings of the 16th international conference on World Wide Web, pages 271-280.
  6. Garcin, F., Dimitrakakis, C., and Faltings, B. (2013). Personalized news recommendation with context trees. CoRR, abs/1303.0665.
  7. Iaquinta, L., Gemmis, M. D., Lops, P., Semeraro, G., Filannino, M., and Molino, P. (2008). Introducing serendipity in a content-based recommender system. In Hybrid Intelligent Systems, 2008. HIS'08. Eighth International Conference on, pages 168-173. IEEE.
  8. Lee, H. and Park, S. J. (2007). Moners: A news recommender for the mobile web. Expert Systems with Applications, 32(1):143-150.
  9. Li, L., Wang, D., Li, T., Knox, D., and Padmanabhan, B. (2011). Scene : A scalable two-stage personalized news recommendation system. In SIGIR 7811 Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval, pages 125-134.
  10. Lin, C., Xie, R., Li, L., Huang, Z., and Li, T. (2012). Premise: personalized news recommendation via implicit social experts. In Proceedings of the 21st ACM international conference on Information and knowledge management, pages 1607-1611. ACM.
  11. Liu, J., Dolan, P., and Pedersen, E. R. (2010). Personalized news recommendation based on click behavior. In IUI 7810 Proceedings of the 15th international conference on Intelligent user interfaces, pages 31-40.
  12. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J. (1994). Grouplens: an open architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM conference on Computer supported cooperative work, pages 175-186. ACM.
  13. Saranya.K.G and Sadhasivam, G. (2012). A personalized online news recommendation system. International Journal of Computer Applications, 57(18):6-14.
  14. Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web, pages 285-295. ACM.
  15. Su, X. and Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. Advances in artificial intelligence, 2009:4.
  16. Tavakolifard, M., Gulla, J. A., Almeroth, K. C., Ingvaldesn, J. E., Nygreen, G., and Berg, E. (2013). Tailored news in the palm of your hand: a multi-perspective transparent approach to news recommendation. In Proceedings of the 22nd international conference on World Wide Web companion, pages 305-308. International World Wide Web Conferences Steering Committee.
  17. Wen, H., Fang, L., and Guan, L. (2012). A hybrid approach for personalized recommendation of news on the web. Expert Systems with Applications, 39(5):5806-5814.
  18. Yeung, K. F. and Yang, Y. (2010). A proactive personalized mobile news recommendation system. In Developments in E-systems Engineering, pages 207-212. IEEE.
Download


Paper Citation


in Harvard Style

Özgöbek Ö., Gulla J. and Erdur R. (2014). A Survey on Challenges and Methods in News Recommendation . In Proceedings of the 10th International Conference on Web Information Systems and Technologies - Volume 2: WEBIST, ISBN 978-989-758-024-6, pages 278-285. DOI: 10.5220/0004844202780285


in Bibtex Style

@conference{webist14,
author={Özlem Özgöbek and Jon Atle Gulla and R. Cenk Erdur},
title={A Survey on Challenges and Methods in News Recommendation},
booktitle={Proceedings of the 10th International Conference on Web Information Systems and Technologies - Volume 2: WEBIST,},
year={2014},
pages={278-285},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004844202780285},
isbn={978-989-758-024-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Web Information Systems and Technologies - Volume 2: WEBIST,
TI - A Survey on Challenges and Methods in News Recommendation
SN - 978-989-758-024-6
AU - Özgöbek Ö.
AU - Gulla J.
AU - Erdur R.
PY - 2014
SP - 278
EP - 285
DO - 10.5220/0004844202780285