Level Set Trees with Enhanced Marginal Density Visualization
Kyösti Karttunen, Lasse Holmström, Jussi Klemelä
2014
Abstract
We study level set tree methods to analyze and visualize multivariate data. The probability density function of the underlying distribution is estimated using a kernel density estimator, and the density estimate is visualized using level set trees. These trees can be used to analyze the mode structure of a function. We show how level set trees can be used to enhance more traditional density function visualization tools, like marginal densities and slices of the density. The method is applied to flow cytometry data.
References
- Bertin, J. (1981). Graphics and Graphic InformationProcessing. De Gruyter, Berlin.
- Carr, D. (2011). hexbin: Hexagonal binning routines. R package, ported by Lewin-Koh, N. and Maechler M.
- Inselberg, A. (1985). The plane with parallel coordinates. The Visual Computer, 1(2):69-91.
- Klemelä, J. (2004). Visualization of multivariate density estimates with level set trees. Journal of Computational and Graphical Statistics, 13(3):599-620.
- Klemelä, J. (2009a). denpro: Visualization of multivariate functions, sets, and data. R package.
- Klemelä, J. (2009b). Smoothing of Multivariate Data- Density Estimation and Visualization. Wiley, New York.
- Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43(1):59-69.
- Lemon, J. (2006). Plotrix: R package. R-News, 6(4):8-12.
- Melamed, M. R., Lindmo, T., and Mendelsohn, M. L. (1994). Flow Cytometry and Sorting. Wiley-Liss, New York.
- Miller, J. J. and Wegman, E. J. (1991). Construction of line densities for parallel coordinate plots. In Buja, A. and O., T., editors, Computing and Graphics in Statistics, pages 107-123. Springer, New York.
- R Core Team (2012). R: A language and environment for statistical computing.
- Sarkar, D. (2008). Lattice: Multivariate Data Visualization with R. Springer, New York.
- Scott, D. W. (1992). Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley, New York.
- Vähäsalo, L. and Holmbom, B. (2005). Influence of latex properties on the formation of white pitch. Tappi Journal, 4(5):27-32.
- Vesanto, J. (1999). Som-based data visualization methods. Intelligent Data Analysis, 3(2):111-126.
Paper Citation
in Harvard Style
Karttunen K., Holmström L. and Klemelä J. (2014). Level Set Trees with Enhanced Marginal Density Visualization . In Proceedings of the 5th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2014) ISBN 978-989-758-005-5, pages 210-217. DOI: 10.5220/0004844302100217
in Bibtex Style
@conference{ivapp14,
author={Kyösti Karttunen and Lasse Holmström and Jussi Klemelä},
title={Level Set Trees with Enhanced Marginal Density Visualization},
booktitle={Proceedings of the 5th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2014)},
year={2014},
pages={210-217},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004844302100217},
isbn={978-989-758-005-5},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 5th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2014)
TI - Level Set Trees with Enhanced Marginal Density Visualization
SN - 978-989-758-005-5
AU - Karttunen K.
AU - Holmström L.
AU - Klemelä J.
PY - 2014
SP - 210
EP - 217
DO - 10.5220/0004844302100217