Hardware Implementation of Smart Embedded Vision Systems

Elisa Calvo-Gallego, Piedad Brox, Santiago Sánchez-Solano

2014

Abstract

The research presented in this contribution is focused on the efficient hardware implementation of image processing algorithms that are present at different levels of a smart vision system. The system is conceived as are configurable embedded device which, in turn, will be a node of a collaborative sensor network. The inclusion of fuzzy logic-based systems is explored to improve the performance of conventional vision algorithms.

References

  1. Bailey, D.., Johnston, C.., 2007. Single Pass Connected Components Analysis.
  2. Bailey, D.G., 2011. Design for embedded image processing on FPGAs. John Wiley & Sons (Asia), Singapore.
  3. Calvo-Gallego, E., 2011. Implementación sobre FPGAs de algoritmos de procesamiento de imágenes para etiquetado de componentes conectados (Trabajo Fin de Máster Máster en Microelectrónica: Diseño y Aplicaciones de Sistemas Micro/Nanométricos). Sevilla.
  4. Calvo-Gallego, E, Aldaya-Cabrera, A., Brox, P, SánchezSolano, S, 2012a. Real-time FPGA Connected Component Labeling System. Presented at the 19th IEEE International Conference on Electronics, Circuits and Systems (ICECS),.
  5. Calvo-Gallego, E., Brox, P., Sanchez-Solano, S., 2012. Un algoritmo en tiempo real para etiquetado de componentes conectados en imágenes, in: Proceedings of the XVIII International IBERCHIP Workshop.
  6. Calvo-Gallego, E, Brox, P, Sanchez-Solano, S, 2013b. A Fuzzy System for Background Modeling in Video Sequences. Springer, Lecture Notes in Artificial Intelligence (LNAI) 184-192.
  7. Chen Wu, Aghajan, H., 2008. Real-Time Human Pose Estimation: A Case Study in Algorithm Design for Smart Camera Networks. Proc. IEEE 96, 1715-1732.
  8. Cho, J.U., Jin, S.H., Dai Pham, X., Jeon, J.W., Byun, J.E., Kang, H., 2006. A real-time object tracking system using a particle filter, in: Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference On. pp. 2822-2827.
  9. Everts, I., Sebe, N., Jones, G.A., 2007. Cooperative Object Tracking with Multiple PTZ Cameras. Presented at the 14th International Conference on Image Analysis and Processing, 2007. ICIAP 2007, pp. 323-330.
  10. Fan Yang, Paindavoine, M., 2003. Implementation of an rbf neural network on embedded systems: real-time face tracking and identity verification. IEEE Trans. Neural Networks 14, 1162-1175.
  11. Garcés-Socarrás, L.., Sánchez-Solano, S., Brox, P., Cabreara Sarmiento, A.., 2013. Library for modelbased design of image processing algorithms on FPGAs. Rev. Fac. Ing. Univ. Antioquia, no68 3-5.
  12. Lazaros, N., Sirakoulis, G. C., Gasteratos, A., 2008. Review of Stereo Vision Algorithms: From Software to Hardware. Int. J. Optomechatronics 2, 435-462.
  13. Lobaton, E., Vasudevan, R., Bajcsy, R., Sastry, S., 2010. A Distributed Topological Camera Network Representation for Tracking Applications. IEEE Trans. Image Process. 19, 2516 -2529.
  14. Nachtegael, M., Van der Weken, D., Kerre, E.E., Philips, W., 2007. Soft Computing in Image Processing, Studies in Fuzziness and Soft Computing,. Springer Verlag.
  15. Sankaranarayanan, A.C., Veeraraghavan, A., Chellappa, R., 2008. Object Detection, Tracking and Recognition for Multiple Smart Cameras. Proc. IEEE 96, 1606- 1624.
  16. Schaeferling, M., Kiefer, G., 2010. Flex-SURF: A flexible architecture for FPGA-based robust feature extraction for optical tracking systems, in: Reconfigurable Computing and FPGAs (ReConFig), 2010 International Conference On. pp. 458-463.
  17. Stillman, S., Tanawongsuwan, R., Essa, I., 1999. Tracking multiple people with multiple cameras, in: International Conference on Audio-and Video-based Biometric Person Authentication.
  18. Svab, J., Krajník, T., Faigl, J., Preucil, L., 2009. Fpga based speeded up robust features, in: Technologies for Practical Robot Applications, 2009. TePRA 2009. IEEE International Conference On. pp. 35-41.
  19. Wnuk, M., 2008. Remarks on Hardware Implementation of Image Processing Algorithms. Int. J. Appl. Math. Comput. Sci. 18.
  20. Yilmaz, A., Javed, O., 2006. Object Tracking: A Survey. ACM Comput. Surv. 38.
  21. Zhao, J., Cheung, S.-C., Nguyen, T., 2008. Optimal Camera Network Configurations for Visual Tagging. IEEE J. Sel. Top. Signal Process. 2, 464 -479.
Download


Paper Citation


in Harvard Style

Calvo-Gallego E., Brox P. and Sánchez-Solano S. (2014). Hardware Implementation of Smart Embedded Vision Systems . In Doctoral Consortium - DCVISIGRAPP, (VISIGRAPP 2014) ISBN Not Available, pages 47-51


in Bibtex Style

@conference{dcvisigrapp14,
author={Elisa Calvo-Gallego and Piedad Brox and Santiago Sánchez-Solano},
title={Hardware Implementation of Smart Embedded Vision Systems},
booktitle={Doctoral Consortium - DCVISIGRAPP, (VISIGRAPP 2014)},
year={2014},
pages={47-51},
publisher={SciTePress},
organization={INSTICC},
doi={},
isbn={Not Available},
}


in EndNote Style

TY - CONF
JO - Doctoral Consortium - DCVISIGRAPP, (VISIGRAPP 2014)
TI - Hardware Implementation of Smart Embedded Vision Systems
SN - Not Available
AU - Calvo-Gallego E.
AU - Brox P.
AU - Sánchez-Solano S.
PY - 2014
SP - 47
EP - 51
DO -